scholarly journals Neural mechanisms of economic commitment in the human medial prefrontal cortex

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Konstantinos Tsetsos ◽  
Valentin Wyart ◽  
S Paul Shorkey ◽  
Christopher Summerfield

Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex.

2017 ◽  
Author(s):  
Lirong Qiu ◽  
Jie Su ◽  
Yinmei Ni ◽  
Yang Bai ◽  
Xiaoli Li ◽  
...  

AbstractDecision-making is usually accompanied by metacognition, through which a decision maker monitors the decision uncertainty and consequently revises the decision, even prior to feedback. However, the neural mechanisms of metacognition remain controversial: one theory proposes that metacognition coincides the decision-making process; and another addresses that it entails an independent neural system in the prefrontal cortex (PFC). Here we devised a novel paradigm of “decision-redecision” to investigate the metacognition process in redecision, in comparison with the decision process. We here found that the anterior PFC, including dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were exclusively activated after the initial decisions. dACC was involved in decision uncertainty monitoring, whereas lFPC was involved in decision adjustment controlling, subject to control demands of the tasks. Our findings support that the PFC is essentially involved in metacognition and further suggest that functions of the PFC in metacognition are dissociable.


2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Zhifang Ye ◽  
Liang Shi ◽  
Anqi Li ◽  
Chuansheng Chen ◽  
Gui Xue

Updating old memories with new, more current information is critical for human survival, yet the neural mechanisms for memory updating in general and the effect of retrieval practice in particular are poorly understood. Using a three-day A-B/A-C memory updating paradigm, we found that compared to restudy, retrieval practice could strengthen new A-C memories and reduce old A-B memory intrusion, but did not suppress A-B memories. Neural activation pattern analysis revealed that compared to restudy, retrieval practice led to stronger target representation in the medial prefrontal cortex (MPFC) during the final test. Critically, it was only under the retrieval practice condition that the MPFC showed strong and comparable competitor evidence for both correct and incorrect trials during final test, and that the MPFC target representation during updating was predictive of subsequent memory. These results suggest that retrieval practice is able to facilitate memory updating by strongly engaging MPFC mechanisms in memory integration, differentiation and consolidation.


2020 ◽  
Vol 15 (10) ◽  
pp. 1086-1096 ◽  
Author(s):  
Janine M Dutcher ◽  
Naomi I Eisenberger ◽  
Hayoung Woo ◽  
William M P Klein ◽  
Peter R Harris ◽  
...  

Abstract Self-affirmation can buffer stress responses across different contexts, yet the neural mechanisms for these effects are unknown. Self-affirmation has been shown to increase activity in reward-related neural regions, including the ventral striatum and ventromedial prefrontal cortex (VMPFC). Given that reward-related prefrontal cortical regions such as the VMPFC are involved in reducing neurobiological and behavioral responses to stress, we hypothesized that self-affirmation would activate VMPFC and also reduce neural responses to stress in key neural threat system regions such as the dorsal anterior cingulate cortex (dACC) and anterior insula (AI). We explored this hypothesis using self-affirmation and evaluative stress tasks following a within-subjects design in the fMRI scanner. Consistent with prior work, self-affirmation blocks led to lower self-reported stress and improved performance. With respect to neural activity, compared to control blocks, self-affirmation blocks led to greater VMPFC activity, and subsequently less left AI (but not dACC) activity during stress task blocks. Functional connectivity analyses revealed greater connectivity between the VMPFC and left and right AI during self-affirmation compared to control. These findings begin to articulate the neural circuits involved in self-affirmation’s effects during exposure to stressors, and more broadly specify neural reward-based responses to stressful situations.


Sign in / Sign up

Export Citation Format

Share Document