scholarly journals Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Zhifang Ye ◽  
Liang Shi ◽  
Anqi Li ◽  
Chuansheng Chen ◽  
Gui Xue

Updating old memories with new, more current information is critical for human survival, yet the neural mechanisms for memory updating in general and the effect of retrieval practice in particular are poorly understood. Using a three-day A-B/A-C memory updating paradigm, we found that compared to restudy, retrieval practice could strengthen new A-C memories and reduce old A-B memory intrusion, but did not suppress A-B memories. Neural activation pattern analysis revealed that compared to restudy, retrieval practice led to stronger target representation in the medial prefrontal cortex (MPFC) during the final test. Critically, it was only under the retrieval practice condition that the MPFC showed strong and comparable competitor evidence for both correct and incorrect trials during final test, and that the MPFC target representation during updating was predictive of subsequent memory. These results suggest that retrieval practice is able to facilitate memory updating by strongly engaging MPFC mechanisms in memory integration, differentiation and consolidation.

2019 ◽  
Author(s):  
Marlieke T.R. van Kesteren ◽  
Paul Rignanese ◽  
Pierre G. Gianferrara ◽  
Lydia Krabbendam ◽  
Martijn Meeter

AbstractBuilding consistent knowledge schemas that organize information and guide future learning is of great importance in everyday life. Such knowledge building is suggested to occur through reinstatement of prior knowledge during new learning in stimulus-specific brain regions. This process is proposed to yield integration of new with old memories, supported by the medial prefrontal cortex (mPFC) and medial temporal lobe (MTL). Possibly as a consequence, congruency of new information with prior knowledge is known to enhance subsequent memory. Yet, it is unknown how reactivation and congruency interact to optimize memory integration processes that lead to knowledge schemas. To investigate this question, we here used an adapted AB-AC inference paradigm in combination with functional Magnetic Resonance Imaging (fMRI). Participants first studied an AB-association followed by an AC-association, so B (a scene) and C (an object) were indirectly linked through their common association with A (an unknown pseudoword). BC-associations were either congruent or incongruent with prior knowledge (e.g. a bathduck or a hammer in a bathroom), and participants were asked to report subjective reactivation strength for B while learning AC. Behaviorally, both the congruency and reactivation measures enhanced memory integration. In the brain, these behavioral effects related to univariate and multivariate parametric effects of congruency and reactivation on activity patterns in the MTL, mPFC, and Parahippocampal Place Area (PPA). Moreover, mPFC exhibited larger connectivity with the PPA for more congruent associations. These outcomes provide insights into the neural mechanisms underlying memory integration enhancement, which can be important for educational learning.Significance statementHow does our brain build knowledge through integrating information that is learned at different periods in time? This question is important in everyday learning situations such as educational settings. Using an inference paradigm, we here set out to investigate how congruency with, and active reactivation of previously learned information affects memory integration processes in the brain. Both these factors were found to relate to activity in memory-related regions such as the medial prefrontal cortex (mPFC) and the hippocampus. Moreover, activity in the parahippocampal place area (PPA), assumed to reflect reinstatement of the previously learned associate, was found to predict subjective reactivation strength. These results show how we can moderate memory integration processes to enhance subsequent knowledge building.


2021 ◽  
Author(s):  
John Philippe Paulus ◽  
Carlo Vignali ◽  
Marc N Coutanche

Associative inference, the process of drawing novel links between existing knowledge to rapidly integrate associated information, is supported by the hippocampus and neocortex. Within the neocortex, the medial prefrontal cortex (mPFC) has been implicated in the rapid cortical learning of new information that is congruent with an existing framework of knowledge, or schema. How the brain integrates associations to form inferences, specifically how inferences are represented, is not well understood. In this study, we investigate how the brain uses schemas to facilitate memory integration in an associative inference paradigm (A-B-C-D). We conducted two event-related fMRI experiments in which participants retrieved previously learned direct (AB, BC, CD) and inferred (AC, AD) associations between word pairs for items that are schema congruent or incongruent. Additionally, we investigated how two factors known to affect memory, a delay with sleep, and reward, modulate the neural integration of associations within, and between, schema. Schema congruency was found to benefit the integration of associates, but only when retrieval immediately follows learning. RSA revealed that neural patterns of inferred pairs (AC) in the PHc, mPFC, and posHPC were more similar to their constituents (AB and BC) when the items were schema congruent, suggesting that schema facilitates the assimilation of paired items into a single inferred unit containing all associated elements. Furthermore, a delay with sleep, but not reward, impacted the assimilation of inferred pairs. Our findings reveal that the neural representations of overlapping associations are integrated into novel representations through the support of memory schema.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Konstantinos Tsetsos ◽  
Valentin Wyart ◽  
S Paul Shorkey ◽  
Christopher Summerfield

Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex.


2018 ◽  
Vol 32 (9) ◽  
pp. 965-978 ◽  
Author(s):  
Leslie A Zebrowitz ◽  
Jasmine Boshyan ◽  
Noreen Ward ◽  
Luke Hanlin ◽  
Jutta M Wolf ◽  
...  

Research demonstrating responsiveness of the neural reward network to face trustworthiness has not assessed whether the effects are mediated by dopaminergic function. We filled this gap in the literature by investigating whether dietary dopamine depletion would blunt the sensitivity of neural activation to faces varying in trustworthiness across reward regions as well as the sensitivity of behavioral responses to those faces. As prolactin release is negatively regulated by dopamine, peripheral prolactin levels confirmed the efficacy of our manipulation. The dopamine depletion manipulation moderated neural activation to face trustworthiness in the amygdala, medial orbital frontal cortex, and ventral medial prefrontal cortex. Control participants ( n=20) showed nonlinear and linear neural activation to face trustworthiness in the amygdala and ventral medial prefrontal cortex, and nonlinear activation in the medial orbital frontal cortex, while depleted participants ( n=20) showed only a linear effect in the amygdala. Controls also showed stronger amygdala activation to high trustworthy faces than depleted participants. In contrast to effects on neural activation, dopamine depletion did not blunt the sensitivity of behavioral ratings. While this is the first study to demonstrate that dopamine depletion blunts the sensitivity of the neural reward system to social stimuli, namely faces varying in trustworthiness, future research should investigate behavioral measures that may be more responsive to dopaminergic effects than face ratings. Such research would shed further light on the possibility that individual differences in dopaminergic function that were simulated by our manipulation influence social interactions with people who vary in facial trustworthiness.


2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Alla Yankouskaya ◽  
Jie Sui

Self and emotions are key motivational factors of a person strivings for health and well-being. Understanding neural mechanisms supporting the relationship between these factors bear far-reaching implications for mental health disorders. Recent work indicates a substantial overlap between self-relevant and emotion information processing and has proposed the medial prefrontal cortex (MPFC) as one shared neural signature. However, the precise cognitive and neural mechanisms represented by the MPFC in investigations of self- and emotion-related processing are largely unknown. Here we examined whether the neural underpinnings of self-related processing in the MPFC link to positive or negative emotions. We collected fMRI data to test the distinct and shared neural circuits of self- and emotion-related processing while participants performed personal (self, friend, or stranger) and emotion (happy, sad, or neutral) associative matching tasks. By exploiting tight control over the factors that determine the effects of self-relevance and emotions (positive: Happy vs. neutral; negative: Sad vs. neutral), our univariate analysis revealed that the ventral part of the MPFC (vmPFC), which has established involvement in self-prioritisation effects, was not recruited in the negative emotion prioritisation effect. In contrast, there were no differences in brain activity between the effects of positive emotion- and self-prioritisation. These results were replicated by both region of interest (ROI)-based analysis in the vmPFC and the seed- to voxel functional connectivity analysis between the MPFC and the rest of the brain. The results suggest that the prioritisation effects for self and positive emotions are tightly linked together, and the MPFC plays a large role in discriminating between positive and negative emotions in relation to self-relevance.


Sign in / Sign up

Export Citation Format

Share Document