scholarly journals Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Kang I Ko ◽  
Cory M Root ◽  
Scott A Lindsay ◽  
Orel A Zaninovich ◽  
Andrew K Shepherd ◽  
...  

The internal state of an organism influences its perception of attractive or aversive stimuli and thus promotes adaptive behaviors that increase its likelihood of survival. The mechanisms underlying these perceptual shifts are critical to our understanding of how neural circuits support animal cognition and behavior. Starved flies exhibit enhanced sensitivity to attractive odors and reduced sensitivity to aversive odors. Here, we show that a functional remodeling of the olfactory map is mediated by two parallel neuromodulatory systems that act in opposing directions on olfactory attraction and aversion at the level of the first synapse. Short neuropeptide F sensitizes an antennal lobe glomerulus wired for attraction, while tachykinin (DTK) suppresses activity of a glomerulus wired for aversion. Thus we show parallel neuromodulatory systems functionally reconfigure early olfactory processing to optimize detection of nutrients at the risk of ignoring potentially toxic food resources.

2021 ◽  
Vol 7 (1) ◽  
pp. eabd6900
Author(s):  
Katrin Vogt ◽  
David M. Zimmerman ◽  
Matthias Schlichting ◽  
Luis Hernandez-Nunez ◽  
Shanshan Qin ◽  
...  

Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in Drosophila larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.


Author(s):  
Katrin Vogt ◽  
David M. Zimmerman ◽  
Matthias Schlichting ◽  
Luis Hernandez-Nunez ◽  
Shanshan Qin ◽  
...  

Animals exhibit different behavioral responses to the same sensory cue depending on their state at a given moment in time. How and where in the brain are sensory inputs combined with internal state information to select an appropriate behavior? Here we investigate how food deprivation affects olfactory behavior in Drosophila larvae. We find that certain odors reliably repel well-fed animals but attract food-deprived animals. We show that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Food deprivation differentially modulates two separate output pathways that are required for opposing behavioral responses. Uniglomerular projection neurons mediate odor attraction and show elevated odor-evoked activity in the food-deprived state. A multiglomerular projection neuron mediates odor aversion and receives odor-evoked inhibition in the food-deprived state. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.


2021 ◽  
Author(s):  
Elie Fink ◽  
Matthieu Louis

Animals differ in their appearances and behaviors. While many genetic studies have addressed the origins of phenotypic differences between fly species, we are still lacking a quantitative assessment of the variability in the way different fly species behave. We tackled this question in one of the most robust behaviors displayed by Drosophila: chemotaxis. At the larval stage, Drosophila melanogaster navigate odor gradients by combining four sensorimotor routines in a multilayered algorithm: a modulation of the overall locomotor speed and turn rate; a bias in turning during down-gradient motion; a bias in turning toward the gradient; the local curl of trajectories toward the gradient ("weathervaning"). Using high-resolution tracking and behavioral quantification, we characterized the olfactory behavior of eight closely related species of the Drosophila group in response to 19 ecologically-relevant odors. Significant changes are observed in the receptive field of each species, which is consistent with the rapid evolution of the peripheral olfactory system. Our results reveal substantial inter-species variability in the algorithms directing larval chemotaxis. While the basic sensorimotor routines are shared, their parametric arrangements can vary dramatically across species. The present analysis sets the stage for deciphering the evolutionary relationships between the structure and function of neural circuits directing orientation behaviors in Drosophila.


1988 ◽  
Vol 11 (4) ◽  
pp. 125-127 ◽  
Author(s):  
Richard G.M. Morris ◽  
Eric R. Kandel ◽  
Larry R. Squire

2020 ◽  
Vol 35 (5) ◽  
Author(s):  
Adam Linson ◽  
Paco Calvo

Abstract It remains at best controversial to claim, non-figuratively, that plants are cognitive agents. At the same time, it is taken as trivially true that many (if not all) animals are cognitive agents, arguably through an implicit or explicit appeal to natural science. Yet, any given definition of cognition implicates at least some further processes, such as perception, action, memory, and learning, which must be observed either behaviorally, psychologically, neuronally, or otherwise physiologically. Crucially, however, for such observations to be intelligible, they must be counted as evidence for some model. These models in turn point to homologies of physiology and behavior that facilitate the attribution of cognition to some non-human animals. But, if one is dealing with a model of animal cognition, it is tautological that only animals can provide evidence, and absurd to claim that plants can. The more substantive claim that, given a general model of cognition, only animals but not plants can provide evidence, must be evaluated on its merits. As evidence mounts that plants meet established criteria of cognition, from physiology to behavior, they continue to be denied entry into the cognitive club. We trace this exclusionary tendency back to Aristotle, and attempt to counter it by drawing on the philosophy of modelling and a range of findings from plant science. Our argument illustrates how a difference in degree between plant and animals is typically mistaken for a difference in kind.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Kimberly J Jennings ◽  
Luis de Lecea

Abstract Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to “activation” of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.


Sign in / Sign up

Export Citation Format

Share Document