scholarly journals A continuum model of transcriptional bursting

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Adam M Corrigan ◽  
Edward Tunnacliffe ◽  
Danielle Cannon ◽  
Jonathan R Chubb

Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli.

Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


2020 ◽  
Vol 13 (5) ◽  
pp. 1085-1093
Author(s):  
XU Da ◽  
◽  
YUE Shi-xin ◽  
ZHANG Guo-yu ◽  
SUN Gao-fei ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 85 ◽  
pp. 105970
Author(s):  
Lianhui Li ◽  
Shouwei Gao ◽  
Mingming Hao ◽  
Xianqing Yang ◽  
Sijia Feng ◽  
...  

2002 ◽  
Vol 38 (13) ◽  
pp. 650 ◽  
Author(s):  
H. Matsuda ◽  
A. Miura ◽  
H. Irie ◽  
S. Tanaka ◽  
K. Ito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document