High-sensitivity and wide-dynamic-range 10 Gbit∕s APD∕preamplifier optical receiver module

2002 ◽  
Vol 38 (13) ◽  
pp. 650 ◽  
Author(s):  
H. Matsuda ◽  
A. Miura ◽  
H. Irie ◽  
S. Tanaka ◽  
K. Ito ◽  
...  
1996 ◽  
Vol 8 (9) ◽  
pp. 1232-1234 ◽  
Author(s):  
T.Y. Yun ◽  
M.S. Park ◽  
J.H. Han ◽  
I. Watanabe ◽  
K. Makita

2003 ◽  
Vol 39 (1) ◽  
pp. 91 ◽  
Author(s):  
R. Vetury ◽  
I. Gontijo ◽  
Yet-zen Liu ◽  
K. Krishnamurthy ◽  
R. Pullela ◽  
...  

2017 ◽  
Vol 38 (4) ◽  
Author(s):  
Tiezhu Zhu ◽  
Taishan Mo ◽  
Tianchun Ye

AbstractAn optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor’s transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of –28 dBm for a bit error rate of 10


Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


2021 ◽  
Author(s):  
Zhen Wang ◽  
Hui Zhang ◽  
Qiang Wang ◽  
Simone Borri ◽  
Iacopo Galli ◽  
...  

Abstract Gas sensors with high sensitivity, wide dynamic range, high selectivity, fast response, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, designing a compact gas sensor with ultra-high sensitivity and ultra-wide dynamic range remains a challenge. Laser-based photoacoustic spectroscopy (PAS) is a promising candidate to fill this gap. Herein, we report a novel method to simultaneously enhance the acoustic and light waves for PAS using integrated optical and acoustic resonators. This increases sensitivity by more than two orders of magnitude and extends the dynamic range by more than three orders of magnitude, compared with the state-of-the-art photoacoustic gas sensors. We demonstrate the concept by exploiting a near-infrared absorption line of acetylene (C2H2) at 1531.59 nm, achieving a detection limit of 0.5 parts-per-trillion (ppt), a noise equivalent absorption (NEA) of 5.7×10-13 cm-1 and a linear dynamic range of eight orders of magnitude. This study enables the realization of compact ultra-sensitive and ultra-wide-dynamic-range gas sensors in a number of different fields.


Sign in / Sign up

Export Citation Format

Share Document