scholarly journals A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
William Thomas Keenan ◽  
Alan C Rupp ◽  
Rachel A Ross ◽  
Preethi Somasundaram ◽  
Suja Hiriyanna ◽  
...  

Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.

2019 ◽  
Author(s):  
Manuel Spitschan

AbstractThe size of the pupil depends on light level. Watson & Yellott (2012) developed a unified formula to predict pupil size from luminance, field diameter, age, and number of eyes. Luminance reflects input from the L and M cones in the retina but ignores the contribution of intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin, which are known to control the size of the pupil. We discuss the role of melanopsin in controlling pupil size by reanalysing an extant data set. We confirm that melanopsin-weighted quantities, in conjunction with Watson & Yellott’s formula, adequately model intensity-dependent pupil size. We discuss the contributions of other photoreceptors into pupil control.


2021 ◽  
Author(s):  
Mai Ahmed ◽  
Yutaka Kojima ◽  
Ichiro Masai

In the vertebrate retina, an interplay between retinal ganglion cells (RGCs), amacrine and bipolar cells establishes a synaptic layer called the inner plexiform layer (IPL). This circuit conveys signals from photoreceptors to visual centers in the brain. However, the molecular mechanisms involved in its development remain poorly understood. Striatin-interacting protein 1 (Strip1) is a core component of the STRIPAK complex, and it has shown emerging roles in embryonic morphogenesis. Here, we uncover the importance of Strip1 in inner retina development. Using zebrafish, we show that loss of Strip1 causes defects in IPL formation. In strip1 mutants, RGCs undergo dramatic cell death shortly after birth. Amacrine and bipolar cells subsequently invade the degenerating RGC layer, leading to a disorganized IPL. Thus, Strip1 promotes IPL formation through RGC maintenance. Mechanistically, zebrafish Strip1 interacts with its STRIPAK partner, Striatin3, to promote RGC survival by suppressing Jun-mediated apoptosis. In addition to its function in RGC maintenance, Strip1 is required for RGC dendritic patterning, which likely contributes to proper IPL formation. Taken together, we propose that a series of Strip1-mediated regulatory events coordinates inner retinal circuit formation by maintaining RGCs during development, which ensures proper positioning and neurite patterning of inner retinal neurons.


2018 ◽  
Author(s):  
Marion F. Haug ◽  
Manuela Berger ◽  
Matthias Gesemann ◽  
Stephan C. F. Neuhauss

AbstractThe retina is a complex neural circuit in which visual information is transmitted and processed from light perceiving photoreceptors to projecting retinal ganglion cells. Much of the computational power of the retina rests on signal integrating interneurons, such as bipolar cells in the outer retina. While mammals possess about 10 different bipolar cell types, zebrafish (Danio rerio) has at least six ON-type, seven OFF-type, and four mixed-input bipolar cells. Commercially available antibodies against bovine and human conventional protein kinase C (PKC) α and -β are frequently used as markers for retinal ON-bipolar cells in different species, despite the fact that it is not known which bipolar cell subtype(s) they actually label.Moreover, the expression pattern of the five prkc genes (coding for PKC proteins) has not been systematically determined. While prkcg is not expressed in retinal tissue, the other four prkc (prkcaa, prkcab, prkcba, prkcbb) transcripts were found in different parts of the inner nuclear layer and some as well in the retinal ganglion cell layer.Immunohistochemical analysis in adult zebrafish retina using PKCα and PKCβ antibodies showed an overlapping immunolabeling of ON-bipolar cells that are most likely of the BON s6L or RRod type and of the BON s6 type. However, comparison of transcript expression with immunolabling, implies that these antibodies are not specific for one single zebrafish conventional PKC, but rather detect a combination of PKC -α and -β variants.


2020 ◽  
Author(s):  
Corinne Beier ◽  
Ze Zhang ◽  
Maria Yurgel ◽  
Samer Hattar

ABSTRACTRetinal ganglion cells (RGCs), the output neurons of the retina, allow us to perceive our visual environment. RGCs respond to rod/cone input through the retinal circuitry, however, a small population of RGCs are in addition intrinsically photosensitive (ipRGCs) and project to unique targets in the brain to modulate a broad range of subconscious visual behaviors such as pupil constriction and circadian photoentrainment. Despite the discovery of ipRGCs nearly two decades ago, there is still little information about how or if conventional RGCs (non-ipRGCs) target ipRGC-recipient nuclei to influence subconscious visual behavior. Using a dual recombinase color strategy, we showed that conventional RGCs innervate many subconscious ipRGC-recipient nuclei, apart from the suprachiasmatic nucleus. We revealed previously unrecognized stratification patterns of retinal innervation from ipRGCs and conventional RGCs in the ventral portion of the lateral geniculate nucleus. Further, we found that the percent innervation of ipRGCs and conventional RGCs across ipsi- and contralateral nuclei differ. Our data provide a blueprint to understand how conventional RGCs and ipRGCs innervate different brain regions to influence subconscious visual behaviors.


2018 ◽  
Vol 4 (1) ◽  
pp. 165-192 ◽  
Author(s):  
Wei Wei

Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.


2020 ◽  
Vol 6 (1) ◽  
pp. 453-468 ◽  
Author(s):  
Robert J. Lucas ◽  
Annette E. Allen ◽  
Nina Milosavljevic ◽  
Riccardo Storchi ◽  
Tom Woelders

A small fraction of mammalian retinal ganglion cells are directly photoreceptive thanks to their expression of the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have well-established roles in a variety of reflex responses to changes in ambient light intensity, including circadian photoentrainment. In this article, we review the growing evidence, obtained primarily from laboratory mice and humans, that the ability to sense light via melanopsin is also an important component of perceptual and form vision. Melanopsin photoreception has low temporal resolution, making it fundamentally biased toward detecting changes in ambient light and coarse patterns rather than fine details. Nevertheless, melanopsin can indirectly impact high-acuity vision by driving aspects of light adaptation ranging from pupil constriction to changes in visual circuit performance. Melanopsin also contributes directly to perceptions of brightness, and recent data suggest that this influences the appearance not only of overall scene brightness, but also of low-frequency patterns.


2010 ◽  
Vol 4 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Han-Yan Gong ◽  
Ying-Ying Zhang ◽  
Pei-Ji Liang ◽  
Pu-Ming Zhang

Sign in / Sign up

Export Citation Format

Share Document