scholarly journals Strip1 regulates retinal ganglion cell survival by suppressing Jun-mediated apoptosis to promote retinal neural circuit formation

2021 ◽  
Author(s):  
Mai Ahmed ◽  
Yutaka Kojima ◽  
Ichiro Masai

In the vertebrate retina, an interplay between retinal ganglion cells (RGCs), amacrine and bipolar cells establishes a synaptic layer called the inner plexiform layer (IPL). This circuit conveys signals from photoreceptors to visual centers in the brain. However, the molecular mechanisms involved in its development remain poorly understood. Striatin-interacting protein 1 (Strip1) is a core component of the STRIPAK complex, and it has shown emerging roles in embryonic morphogenesis. Here, we uncover the importance of Strip1 in inner retina development. Using zebrafish, we show that loss of Strip1 causes defects in IPL formation. In strip1 mutants, RGCs undergo dramatic cell death shortly after birth. Amacrine and bipolar cells subsequently invade the degenerating RGC layer, leading to a disorganized IPL. Thus, Strip1 promotes IPL formation through RGC maintenance. Mechanistically, zebrafish Strip1 interacts with its STRIPAK partner, Striatin3, to promote RGC survival by suppressing Jun-mediated apoptosis. In addition to its function in RGC maintenance, Strip1 is required for RGC dendritic patterning, which likely contributes to proper IPL formation. Taken together, we propose that a series of Strip1-mediated regulatory events coordinates inner retinal circuit formation by maintaining RGCs during development, which ensures proper positioning and neurite patterning of inner retinal neurons.

2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


Development ◽  
1975 ◽  
Vol 33 (4) ◽  
pp. 915-940
Author(s):  
S. H. Chung ◽  
R. Victoria Stirling ◽  
R. M. Gaze

The structural transformations of the larval Xenopus retina at successive stages of development, and concomitant changes in response characteristics of retinal ganglion cells, were studied using histological and electrophysiological techniques. The first sign of visually evoked electrical responses appears at about the time when the ganglion cells spread out into a single layer and shortly after the inner and outer plexiform layers become discernible. Initially giving simple ‘on’ responses, the cells progressively change their response characteristics and become ‘event’ units. Subsequently, ‘dimming’ units can be identified. Throughout larval life, response properties of these two types become more distinct from one another and approximate to those found in the adult. So do the arborization patterns of the dendritic trees of the ganglion cells. Two types of branching patterns are identifiable in Golgi preparations. Around metamorphic climax, a new type of ganglion cell appears, coinciding with the emergence of ‘sustained’ units electrophysiologically. After metamorphosis, the retina still grows both in thickness (mainly in the inner plexiform layer) and diameter. The three unit types change such that they come to show pronounced inhibitory effects from the peripheral visual field on the receptive field and each unit type acquires a distinct pattern of endogenous discharge.


1996 ◽  
Vol 13 (6) ◽  
pp. 1099-1107 ◽  
Author(s):  
Péter Buzás ◽  
Sára Jeges ◽  
Robert Gábriel

AbstractThe main route of information flow through the vertebrate retina is from the photoreceptors towards the ganglion cells whose axons form the optic nerve. Bipolar cells of the frog have been so far reported to contact mostly amacrine cells and the majority of input to ganglion cells comes from the amacrines. In this study, ganglion cells of frogs from two species (Bufo marinus, Xenopus laevis) were filled retrogradely with horseradish peroxidase. After visualization of the tracer, light-microscopic cross sections showed massive labeling of the somata in the ganglion cell layer as well as their dendrites in the inner plexiform layer. In cross sections, bipolar output and ganglion cell input synapses were counted in the electron microscope. Each synapse was assigned to one of the five equal sublayers (SLs) of the inner plexiform layer. In both species, bipolar cells were most often seen to form their characteristic synaptic dyads with two amacrine cells. In some cases, however, the dyads were directed to one amacrine and one ganglion cell dendrite. This type of synapse was unevenly distributed within the inner plexiform layer with the highest occurrence in SL2 both in Bufo and Xenopus. In addition, SL4 contained also a high number of this type of synapse in Xenopus. In both species, we found no or few bipolar to ganglion cell synapses in the marginal sublayers (SLs 1 and 5). In Xenopus, 22% of the bipolar cell output synapses went onto ganglion cells, whereas in Bufo this was only 10%. We conclude that direct bipolar to ganglion cell information transfer exists also in frogs although its occurrence is not as obvious and regular as in mammals. The characteristic distribution of these synapses, however, suggests that specific type of the bipolar and ganglion cells participate in this process. These contacts may play a role in the formation of simple ganglion cell receptive fields.


1991 ◽  
Vol 7 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Roberta G. Pourcho ◽  
Michael T. Owczarzak

AbstractImmunocytochemical techniques were used to localize strychnine-sensitive glycine receptors in cat retina. Light microscopy showed staining in processes ramifying throughout the inner plexiform layer and in cell bodies of both amacrine and ganglion cells. At the electron-microscopic level, receptor immunoreactivity was seen to be clustered at sites postsynaptic to amacrine cells. In contrast, bipolar cells were neither presynaptic nor postsynaptic elements at sites of glycine receptor staining. Double-label studies verified the presence of glycine immunoreactivity in amacrine terminals presynaptic to glycine receptors. These findings support a role for glycine as an inhibitory neurotransmitter in amacrine cells.


2000 ◽  
Vol 355 (1401) ◽  
pp. 1161-1166 ◽  
Author(s):  
M. Uemura ◽  
H. Somiya ◽  
M. Moku ◽  
K. Kawaguchi

The daggertooth Anotopteruspharao (Aulopiformes: Anotopteridae) is a large, piscivorous predator that lives within the epipelagic zone at night. In this species, the distribution of retinal ganglion cells has been examined. An isodensity contour map of ganglion cells shows that the cells concentrate in a slightly ventral region of the temporal retina. The region of high ganglion cell density contains 4.07 × 10 3 cells mm −2 , and the resulting visual acuity is 3.5 cycles deg −1 . Outside the area centralis, conspicuously large ganglion cells (LGCs) are observed in the temporal margin of the retina. The LGCs are regularly arrayed, and displaced into the inner plexiform layer. Thick dendrites extend into the outer part (sublamina a) of the inner plexiform layer. In the retinal whole mount, the total number of LGCs is 1590 (90.7cm specimen), and the mean size of the LGCs is about four times larger than that of the ordinary ganglion cells. The morphological appearance of the LGCs was similar to the off–type alpha cells of the cat retina. The function of these distinctive LGCs is discussed in relation to specific head–up feeding behaviour.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


2013 ◽  
Vol 680 ◽  
pp. 509-514
Author(s):  
Zhi Long Wu ◽  
Zhi Jie Wang

The final objective of retinal simulation is to construct an artificial computer retina to replace the biological retina, and to offset the vision-impaired people. Due to the complexity of the retinal structure and the great number of bipolar cells and ganglion cells in retinal (exceeding tens of millions), both the speed and accuracy of the simulation of the retinal up to date are at a low level. In this paper we present a method for the simulation of inner plexiform layer of retina based on Compute Unified Device Architecture (CUDA) parallel algorithm to achieve the maximum utilization of CPU and Graphic Processing Unit(GPU), and to improve the speed and accuracy of the retina simulation.


2002 ◽  
Vol 19 (5) ◽  
pp. 575-581 ◽  
Author(s):  
ALINO MARTINEZ-MARCOS ◽  
ENRIQUE LANUZA ◽  
FERNANDO MARTINEZ-GARCIA

Retinal ganglion cells projecting to the optic tectum and visual thalamus have been investigated in the lizard, Podarcis hispanica. Injections of biotinylated dextran-amine in the optic tectum reveal seven morphological cell varieties including one displaced ganglion cell type. Injections in the visual thalamus yield similar ganglion cell classes plus four giant ganglion cells, including two displaced ganglion cell types. The present study constitutes the first comparison of tectal versus thalamic ganglion cell types in reptiles. The situation found in lizards is similar to that reported in mammals and birds where some cell types projecting to the thalamus are larger than those projecting to the mesencephalic roof. The presence of giant retino-thalamic ganglion cells with specific dendritic arborizations in sublaminae A and B of the inner plexiform layer suggests that parts of the visual thalamus of lizards could be implicated in movement detection, a role that might be played by the ventral lateral geniculate nucleus, which is involved in our tracer injections.


2001 ◽  
Vol 18 (5) ◽  
pp. 741-751 ◽  
Author(s):  
P.T. JOHNSON ◽  
M.A. RAVEN ◽  
B.E. REESE

Photoreceptors in the ferret's retina have been shown to project transiently to the inner plexiform layer (IPL) prior to their differentiation of an outer segment. On postnatal day 15 (P-15), when this projection achieves maximal density, the photoreceptors projecting into the IPL extend primarily to one of two depths, coincident with the processes of cholinergic amacrine cells. The present study has used an excitotoxic approach employing subcutaneous injections of l-glutamate to ablate these cholinergic amacrine cells on P-7, in order to see whether their elimination alters this targeting of photoreceptor terminals within the IPL. The near-complete elimination of cholinergic amacrine cells at P-15 was confirmed, although the population of retinal ganglion cells was also affected, being depleted by roughly 50%. The rod opsin-immunopositive terminals in such treated ferrets no longer showed a stratified distribution, being found throughout the depth of the IPL, as well as extending into the ganglion cell layer. This effect should not be due to the partial loss of retinal ganglion cells, however, since optic nerve transection at P-2, which eliminates the ganglion cells entirely while leaving the cholinergic amacrine cell population intact, was shown not to affect the stratification pattern of the photoreceptors within the IPL. These results strongly suggest that the targeting of the photoreceptor terminals to discrete strata within the IPL is dependent upon the cholinergic amacrine cell processes.


Sign in / Sign up

Export Citation Format

Share Document