scholarly journals Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Andrea Pawellek ◽  
Ursula Ryder ◽  
Triin Tammsalu ◽  
Lewis J King ◽  
Helmi Kreinin ◽  
...  

We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, preventing formation of the B complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles containing polyadenylated RNA. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including six proteins that are components of the U2 snRNP and required for A complex formation.

2017 ◽  
Author(s):  
Andrea Pawellek ◽  
Ursula Ryder ◽  
Triin Tammsalu ◽  
Lewis J. King ◽  
Helmi Kreinin ◽  
...  

AbstractHere, we identify the plant biflavanoid hinokiflavone as an inhibitor of splicingin vitroand modulater of alternative splicing in multiple human cell lines. Hinokiflavone inhibits splicingin vitroby blocking one or more early steps of spliceosome assembly, leading to accumulation of the A complex. Multiple human cell lines treated with hinokiflavone show changes in the alternative splicing of different pre-mRNA substrates, but little or no change in transcription. They also show altered subnuclear organization, specifically of splicing factors required for A complex formation, which relocalized together with SUMO1 and SUMO2 into enlarged nuclear speckles. While most cell lines treated with hinokiflavone showed cell cycle arrest and eventual cell death, dependent on time and concentration, the promyelocytic NB4 cell line, which expresses the SUMO target PML-RARalpha fusion protein, was exquisitely sensitive to apoptosis following hinokiflavone treatment. Hinokiflavone treatment increased protein SUMOylation levels, both inin vitrosplicing reactions and in cells, with little or no effect on levels of ubiquitinylated proteins. Hinokiflavone also inhibited the catalytic activity of purifiedE. coliexpressed SUMO protease, SENP1in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased following hinokiflavone treatment, with the major targets including 6 proteins that are associated with U2 snRNP and required for A complex formation. These data identify hinokiflavone as a SUMO protease inhibitor and indicate SUMOylation of splicing factors may be important for modulating splice site selection.


2008 ◽  
Vol 416 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Aparna K. Sapra ◽  
Piyush Khandelia ◽  
Usha Vijayraghavan

Saccharomyces cerevisiae PRP17-null mutants are temperature-sensitive for growth. In vitro splicing with extracts lacking Prp17 are kinetically slow for the first step of splicing and are arrested for the second step at temperatures greater than 34 °C. In the present study we show that these stalled spliceosomes are compromised for an essential conformational switch that is triggered by Prp16 helicase. These results suggest a plausible mechanistic basis for the second-step arrest in prp17Δ extracts and support a role for Prp17 in conjunction with Prp16. To understand the association of Prp17 with spliceosomes we used a functional epitope-tagged protein in co-immunoprecipitation experiments. Examination of co-precipitated snRNAs (small nuclear RNAs) show that Prp17 interacts with U2, U5 and U6 snRNPs (small nuclear ribonucleoproteins) but it is not a core component of any one snRNP. Prp17 association with in-vitro-assembled spliceosome complexes on actin pre-mRNAs was also investigated. Although the U5 snRNP proteins Prp8 and Snu114 are found in early pre-spliceosomes that contain all five snRNPs, Prp17 is not detectable at this step; however, Prp17 is present in the subsequent pre-catalytic A1 complex, containing unspliced pre-mRNA, formed after the dissociation of U4 snRNP. Thus Prp17 joins the spliceosome prior to both catalytic reactions. Our results indicate continued interactions in catalytic spliceosomes that contain reaction intermediates and in post-splicing complexes containing the lariat intron. These Prp17–spliceosome association analyses provide a biochemical basis for the delayed first step in prp17Δ and explain the previously known multiple genetic interactions between Prp17, factors of the Prp19-complex [NTC (nineteen complex)], functional elements in U2 and U5 snRNAs and other second-step splicing factors.


2008 ◽  
Vol 28 (9) ◽  
pp. 3045-3057 ◽  
Author(s):  
José Rino ◽  
Joana M. P. Desterro ◽  
Teresa R. Pacheco ◽  
Theodorus W. J. Gadella ◽  
Maria Carmo-Fonseca

ABSTRACT Splicing factors SF1 and U2AF associate cooperatively with pre-mRNA and play a crucial role in 3′ splice site recognition during early steps of spliceosome assembly. Formation of the active spliceosome subsequently displaces SF1 in a remodeling process that stabilizes the association of U2 snRNP with pre-mRNA. Fluorescence microscopy shows SF1 and U2AF distributed throughout the nucleoplasm, where transcription occurs, with additional concentration in nuclear speckles, where splicing factors accumulate when not engaged in splicing. Fluorescence recovery after photobleaching analysis in live cells shows that the mobilities of SF1 and the two subunits of U2AF (U2AF65 and U2AF35) are correlated with the abilities of these proteins to interact with each other. Direct binding of SF1 to U2AF65 was demonstrated by fluorescence resonance energy transfer in both the nucleoplasm and nuclear speckles. This interaction persisted after transcription inhibition, suggesting that SF1 associates with U2AF in a splicing-independent manner. We propose that SF1 and U2AF form extraspliceosomal complexes before and after taking part in the assembly of catalytic spliceosomes.


1989 ◽  
Vol 9 (12) ◽  
pp. 5273-5280 ◽  
Author(s):  
G C Conway ◽  
A R Krainer ◽  
D L Spector ◽  
R J Roberts

Pre-mRNA splicing occurs in a macromolecular complex called the spliceosome. Efforts to isolate spliceosomes from in vitro splicing reactions have been hampered by the presence of endogenous complexes that copurify with de novo spliceosomes formed on added pre-mRNA. We have found that removal of these large complexes from nuclear extracts prevents the splicing of exogenously added pre-mRNA. We therefore examined these complexes for the presence of splicing factors and proteins known or thought to be involved in RNA splicing. These fast-sedimenting structures were found to contain multiple small nuclear ribonucleoproteins (snRNPs) and a fragmented heterogeneous nuclear ribonucleoprotein complex. At least two splicing factors other than the snRNPs were also associated with these large structures. Upon incubation with ATP, these splicing factors as well as U1 and U2 snRNPs were released from these complexes. The presence of multiple splicing factors suggests that these complexes may be endogenous spliceosomes released from nuclei during preparation of splicing extracts. The removal of these structures from extracts that had been preincubated with ATP yielded a splicing extract devoid of large structures. This extract should prove useful in the fractionation of splicing factors and the isolation of native spliceosomes formed on exogenously added pre-mRNA.


2021 ◽  
Author(s):  
Evan Lester ◽  
Felicia K. Ooi ◽  
Nadine Bakkar ◽  
Jacob Ayers ◽  
Amanda L. Woerman ◽  
...  

AbstractTau aggregates contribute to neurodegenerative diseases including frontotemporal dementia and Alzheimer’s disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate in cell culture and mouse brains that both cytosolic and nuclear tau aggregates contain RNA, with enrichment for snRNAs and snoRNAs. Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, which are membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and patient brains with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations we observe the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.


2020 ◽  
Author(s):  
Arun Prasath Damodaran ◽  
Olivia Gavard ◽  
Jean-Philippe Gagné ◽  
Malgorzata Ewa Rogalska ◽  
Estefania Mancini ◽  
...  

ABSTRACTAurora-A kinase is well known to regulate progression through mitosis. However, the kinase also performs additional functions that could explain the failure of its inhibitors to be effective in cancer treatments. To identify these functions, we applied a proteomics approach to search for interactors of Aurora-A. We found a large number of proteins involved in pre-mRNA splicing, strongly suggesting an important role for Aurora-A in this biological process. Consistently, we first report the subcellular localization of Aurora-A in nuclear speckles, the storehouse of splicing proteins. We also demonstrate direct interaction of Aurora-A with RRM domain-containing splicing factors such as hnRNP and SR proteins and their phosphorylation in vitro. Further, RNA-sequencing analysis following pharmacological inhibition of Aurora-A resulted in alternative splicing changes corresponding to 505 genes, including genes with functions regulated by Aurora-A kinase. Finally, we report enrichment of RNA motifs within the alternatively spliced regions affected by Aurora-A kinase inhibition which are bound by Aurora-A interacting splicing factors, suggesting that Aurora-A regulates alternative splicing by modulating the activity of these interacting splicing factors. Overall our work identified Aurora-A as a novel splicing kinase and for the first time, describes a broad role of Aurora-A in regulating alternative splicing.


Biochemistry ◽  
2008 ◽  
Vol 47 (7) ◽  
pp. 2153-2161 ◽  
Author(s):  
Makoto Rembutsu ◽  
Marc P. M. Soutar ◽  
Lidy Van Aalten ◽  
Robert Gourlay ◽  
C. James Hastie ◽  
...  

2006 ◽  
Vol 87 (8) ◽  
pp. 2181-2190 ◽  
Author(s):  
Heejung Kang ◽  
Eui Tae Kim ◽  
Hye-Ra Lee ◽  
Jung-Jin Park ◽  
Yoon Young Go ◽  
...  

In human cytomegalovirus-infected cells, the immediate-early IE1 protein disrupts the subnuclear structures known as the PML oncogenic domains or PODs, via the induction of PML desumoylation. This activity correlates with the functions of IE1 in transcriptional regulation and in the stimulation of lytic infection. Here, the effects of IE1 in induction of desumoylation of PML were characterized. IE1 did not interfere with the formation of sumoylated forms of PML in vitro. In in vitro assays using the sumoylated proteins, a SUMO-specific protease SENP1 desumoylated both PML and IE1. However, the IE1 proteins generated from bacteria or insect cells were unable to desumoylate PML in the same conditions. Although both IE1 and SUMO proteases such as SENP1, Axam and SuPr-1 efficiently desumoylated PML in co-transfection assays, they exerted different effects on the localization of PML. In cells transfected with either SENP1 or SuPr-1, the number of PML foci was reduced significantly and these remnant PML foci were devoid of SUMO-1 signals. However, in cells co-transfected with both SUMO proteases and IE1, these SUMO-independent PML foci were also completely disrupted. Furthermore, IE1, but not SENP1, was shown to disrupt the PML foci generated via transfection of a sumoylation-deficient mutant of PML. These data suggest that IE1 exhibits neither an inhibitory effect on sumoylation of PML nor intrinsic SUMO protease activity against PML in vitro. The finding that IE1 is capable of disrupting SUMO-independent PML aggregates suggests that inhibition of PML oligomerization by IE1 may play an important role in inducing PML desumoylation in vivo.


1999 ◽  
Vol 112 (16) ◽  
pp. 2647-2656 ◽  
Author(s):  
S.D. Gross ◽  
J.C. Loijens ◽  
R.A. Anderson

Casein kinase I is a highly conserved family of serine/threonine protein kinases present in every organism tested from yeast to humans. To date, little is known about the function of the higher eukaryotic isoforms in this family. The CKI isoforms in Saccharomyces cerevisiae, however, have been genetically linked to the regulation of DNA repair, cell cycle progression and cytokinesis. It has also been established that the nuclear localization of two of these isoforms is essential for their function. The work presented here demonstrates that the higher eukaryotic CKIalpha isoform is also present within nuclei of certain established cell lines and associated with discrete nuclear structures. The nature of its nuclear localization was characterized. In this regard, CKIalpha was shown to colocalize with factors involved in pre-mRNA splicing at nuclear speckles and that its association with these structures exhibited several biochemical properties in common with known splicing factors. The kinase was also shown to be associated with a complex that contained certain splicing factors. Finally, in vitro, CKIalpha was shown to be capable of phosphorylating particular splicing factors within a region rich in serine/arginine dipeptide repeat motifs suggesting that it has both the opportunity and the capacity to regulate one or more steps of mRNA metabolism.


2000 ◽  
Vol 74 (13) ◽  
pp. 5902-5910 ◽  
Author(s):  
Zhi-Ming Zheng ◽  
Jesse Quintero ◽  
Eric S. Reid ◽  
Christian Gocke ◽  
Carl C. Baker

ABSTRACT Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3′ splice site utilization from an early 3′ splice site at nucleotide (nt) 3225 to a late-specific 3′ splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3′ splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3′ splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3′ splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3′ splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3′ splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3′ splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3′ splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3′ splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3′ splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3′ splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.


Sign in / Sign up

Export Citation Format

Share Document