scholarly journals Inhibition of SUMO-independent PML oligomerization by the human cytomegalovirus IE1 protein

2006 ◽  
Vol 87 (8) ◽  
pp. 2181-2190 ◽  
Author(s):  
Heejung Kang ◽  
Eui Tae Kim ◽  
Hye-Ra Lee ◽  
Jung-Jin Park ◽  
Yoon Young Go ◽  
...  

In human cytomegalovirus-infected cells, the immediate-early IE1 protein disrupts the subnuclear structures known as the PML oncogenic domains or PODs, via the induction of PML desumoylation. This activity correlates with the functions of IE1 in transcriptional regulation and in the stimulation of lytic infection. Here, the effects of IE1 in induction of desumoylation of PML were characterized. IE1 did not interfere with the formation of sumoylated forms of PML in vitro. In in vitro assays using the sumoylated proteins, a SUMO-specific protease SENP1 desumoylated both PML and IE1. However, the IE1 proteins generated from bacteria or insect cells were unable to desumoylate PML in the same conditions. Although both IE1 and SUMO proteases such as SENP1, Axam and SuPr-1 efficiently desumoylated PML in co-transfection assays, they exerted different effects on the localization of PML. In cells transfected with either SENP1 or SuPr-1, the number of PML foci was reduced significantly and these remnant PML foci were devoid of SUMO-1 signals. However, in cells co-transfected with both SUMO proteases and IE1, these SUMO-independent PML foci were also completely disrupted. Furthermore, IE1, but not SENP1, was shown to disrupt the PML foci generated via transfection of a sumoylation-deficient mutant of PML. These data suggest that IE1 exhibits neither an inhibitory effect on sumoylation of PML nor intrinsic SUMO protease activity against PML in vitro. The finding that IE1 is capable of disrupting SUMO-independent PML aggregates suggests that inhibition of PML oligomerization by IE1 may play an important role in inducing PML desumoylation in vivo.

2002 ◽  
Vol 70 (5) ◽  
pp. 2559-2565 ◽  
Author(s):  
Jean-Luc Perfettini ◽  
Toni Darville ◽  
Alice Dautry-Varsat ◽  
Roger G. Rank ◽  
David M. Ojcius

ABSTRACT The effect of gamma interferon (IFN-γ) on apoptosis due to infection by Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis) was studied in epithelial cells in culture and in the genital tracts of mice. IFN-γ concentrations that induce the formation of aberrant, persistent chlamydiae inhibit apoptosis due to C. muridarum infection. In cells treated with an IFN-γ concentration that leads to the development of a heterogenous population of normal and aberrant Chlamydia vacuoles, apoptosis was inhibited preferentially in cells that contained the aberrant vacuoles. The inhibitory effect of IFN-γ appears to be due in part to expression of host cell indoleamine 2,3-dioxygenase activity, since inhibition of apoptosis could be partially reversed through coincubation with exogenous tryptophan. Apoptotic cells were observed in the genital tracts of wild-type mice infected with C. muridarum, and a significantly larger number of apoptotic cells was detected in infected IFN-γ-deficient mice. These results suggest that IFN-γ may contribute to pathogenesis of persistent Chlamydia infections in vivo by preventing apoptosis of infected cells.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Hongping Jin ◽  
Yifan Sun ◽  
Dongsheng Li ◽  
Min-Hsuan Lin ◽  
Mary Lor ◽  
...  

ABSTRACT Nullbasic is a mutant form of the HIV-1 transcriptional activator protein (Tat) that strongly inhibits HIV-1 transcription and replication in lymphocytes in vitro. To investigate Nullbasic inhibition in vivo, we employed an NSG mouse model where animals were engrafted with primary human CD4+ cells expressing a Nullbasic-ZsGreen1 (NB-ZSG) fusion protein or ZSG. NB-ZSG and ZSG were delivered by using a retroviral vector where CD4+ cells were transduced either prior to (preinfection) or following (postinfection) HIV-1 infection. The transduced cells were analyzed in vitro up to 10 days postinfection (dpi) and in vivo up to 39 dpi. Compared to ZSG, NB-ZSG strongly inhibited HIV-1 replication both in vitro and in vivo using preinfection treatment. In vitro, HIV-1 mRNA levels in cells were reduced by up to 60-fold. In vivo, HIV-1 RNA was undetectable in plasma samples during the course of the experiment, and HIV-1 mRNA levels in resident CD4+ cells in organ tissue were reduced up to 2,800-fold. Postinfection treatment of HIV-1-infected cells with NB-ZSG attenuated HIV-1 infection for up to 14 days. In vitro, a 25-fold reduction of viral mRNA in cells was observed but diminished to a <2-fold reduction by 10 dpi. In vivo, HIV-1 RNA was undetectable in plasma of NB-ZSG mice at 14 dpi but afterwards was not significantly different between NB-ZSG mice and control mice. However, we observed higher levels of CD4+ cells in NB-ZSG mice than in control mice, suggesting that NB-ZSG imparted a survival advantage to HIV-1-infected animals. IMPORTANCE HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces viral loads below detectable levels in patients. However, therapy interruption leads to viral rebound due to latently infected cells, which serve as a source of continued viral infection. Interest in strategies leading to a functional cure for HIV-1 infection by long-term or permanent viral suppression is growing. Here, we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, inhibits HIV-1 transcription in infected CD4+ cells in vivo. Analysis shows that stable expression of Nullbasic in CD4+ cells could lead to durable anti-HIV-1 activity. Nullbasic, as a gene therapy candidate, could be a part of a functional-cure strategy to suppress HIV-1 transcription and replication.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009971
Author(s):  
Sushil Khatiwada ◽  
Gustavo Delhon ◽  
Sabal Chaulagain ◽  
Daniel L. Rock

Viruses have evolved mechanisms to subvert critical cellular signaling pathways that regulate a wide range of cellular functions, including cell differentiation, proliferation and chemotaxis, and innate immune responses. Here, we describe a novel ORFV protein, ORFV113, that interacts with the G protein-coupled receptor Lysophosphatidic acid receptor 1 (LPA1). Consistent with its interaction with LPA1, ORFV113 enhances p38 kinase phosphorylation in ORFV infected cells in vitro and in vivo, and in cells transiently expressing ORFV113 or treated with soluble ORFV113. Infection of cells with virus lacking ORFV113 (OV-IA82Δ113) significantly decreased p38 phosphorylation and viral plaque size. Infection of cells with ORFV in the presence of a p38 kinase inhibitor markedly diminished ORFV replication, highlighting importance of p38 signaling during ORFV infection. ORFV113 enhancement of p38 activation was prevented in cells in which LPA1 expression was knocked down and in cells treated with LPA1 inhibitor. Infection of sheep with OV-IA82Δ113 led to a strikingly attenuated disease phenotype, indicating that ORFV113 is a major virulence determinant in the natural host. Notably, ORFV113 represents the first viral protein that modulates p38 signaling via interaction with LPA1 receptor.


Author(s):  
Chun Guo ◽  
Keri L. Hildick ◽  
Juwei Jiang ◽  
Alice Zhao ◽  
Wenbin Guo ◽  
...  

Dysregulation of the mitochondrial fission machinery has been linked to cell death following ischemia. Fission is largely dependent on recruitment of Dynamin-related protein 1 (Drp1) to the receptor Mitochondrial fission factor (Mff) located on the mitochondrial outer membrane (MOM). Drp1 is a target for SUMOylation and its deSUMOylation, mediated by the SUMO protease SENP3, enhances the Drp1-Mff interaction to promote cell death in an oxygen/glucose deprivation (OGD) model of ischemia. Another interacting partner for Drp1 is the Bcl-2 family member Bcl-xL, an important protein in cell death and survival pathways. Here we demonstrate that preventing Drp1 SUMOylation by mutating its SUMO target lysines enhances the Drp1-Bcl-xL interaction in vivo and in vitro. Moreover, SENP3-mediated deSUMOylation of Drp1 promotes the Drp1-Bcl-xL interaction. Our data suggest that Mff primes Drp1 binding to Bcl-xL at the mitochondria and that Mff and Bcl-xL can interact directly, independent of Drp1, through their transmembrane domains. Importantly, SENP3 loss in cells subjected to OGD correlates with reduced Drp1-Bcl-xL interaction, whilst recovery of SENP3 levels in cells subjected to reoxygenation following OGD correlates with increased Drp1-Bcl-xL interaction. Expressing a Bcl-xL mutant with defective Drp1 binding reduces OGD plus reoxygenation-evoked cell death. Taken together, our results indicate that SENP3-mediated deSUMOlyation promotes an Mff-primed Drp1-Bcl-xL interaction that contributes to cell death following ischemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Chen ◽  
Guanlie Li ◽  
Haiqing He ◽  
Xin Li ◽  
Wenjing Niu ◽  
...  

Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV DNA polymerase processivity factor UL44 plays an essential role in viral DNA replication. To better understand the biology of UL44, we performed a yeast two-hybrid screen for host proteins that could interact with UL44. The most frequently isolated result was the SUMO-conjugating enzyme UBC9, a protein involved in the sumoylation pathway. The UBC9-UL44 interaction was confirmed by in vitro His-tag pull-down and in vivo co-immunoprecipitation assays. Using deletion mutants of UL44, we mapped two small regions of UL44, aa 11–16, and 260–269, which might be critical for the interaction with UBC9. We then demonstrated that UL44 was a target for sumoylation by in vitro and in vivo sumoylation assays, as well as in HCMV-infected cells. We further confirmed that 410lysine located within a ψKxE consensus motif on UL44 carboxy-terminal was the major sumoylation site of UL44. Interestingly, although 410lysine had no effects on subcellular localization or protein stability of UL44, the removal of 410lysine sumoylation site enhanced both viral DNA synthesis in transfection-replication assays and viral progeny production in infected cells for HCMV, suggesting sumoylation can attenuate HCMV replication through targeting UL44. Our results suggest that sumoylation plays a key role in regulating UL44 functions and viral replication, and reveal the crucial role of the carboxy-terminal of UL44, for which little function has been known before.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Philipp Kolb ◽  
Steven Sijmons ◽  
Matthew R. McArdle ◽  
Husam Taher ◽  
Jennie Womack ◽  
...  

ABSTRACTReceptors recognizing the Fc part of immunoglobulin G (FcγRs) are key determinants in antibody-mediated immune responses. Members of theHerpesviridaeinterfere with this immune regulatory network by expressing viral FcγRs (vFcγRs). Human cytomegalovirus (HCMV) encodes four distinct vFcγRs that differ with respect to their IgG subtype specificity and their impact on antibody-mediated immune functionin vitro. The impact of vFcγRs on HCMV pathogenesis and immunomodulationin vivois not known. The closest evolutionary animal model of HCMV is rhesus CMV (RhCMV) infection of rhesus macaques. To enable the characterization of vFcγR function in this model, we studied IgG binding by RhCMV. We show that lysates of RhCMV-infected cells contain an IgG-binding protein of 30 kDa encoded by the geneRh05that is a predicted type I glycoprotein belonging to theRL11gene family. Upon deletion ofRh05, IgG-Fc binding by RhCMV strain 68-1 is lost, whereas ectopic expression of Rh05 results in IgG binding to transfected cells consistent with Rh05 being a vFcγR. Using a set of reporter cell lines stably expressing human and rhesus FcγRs, we further demonstrate thatRh05antagonizes host FcγR activation. Compared toRh05-intact RhCMV, RhCMVΔRh05 showed an increased activation of host FcγR upon exposure of infected cells to IgG from RhCMV-seropositive animals, suggesting that Rh05 protects infected cells from opsonization and IgG-dependent activation of host FcγRs. However, antagonizing host FcγR activation by Rh05 was not required for the establishment and maintenance of infection of RhCMV, even in a seropositive host, as shown by the induction of T cell responses to heterologous antigens expressed by RhCMV lacking the gene region encoding Rh05. In contrast to viral evasion of natural killer cells or T cell recognition, the evasion of antibody-mediated effects does not seem to be absolutely required for infection or reinfection. The identification of the first vFcγR that efficiently antagonizes host FcγR activation in the RhCMV genome will thus permit more detailed studies of this immunomodulatory mechanism in promoting viral dissemination in the presence of natural or vaccine-induced humoral immunity.IMPORTANCERhesus cytomegalovirus (RhCMV) offers a unique model for studying human cytomegalovirus (HCMV) pathogenesis and vaccine development. RhCMV infection of nonhuman primates greatly broadened the understanding of mechanisms by which CMVs evade or reprogram T cell and natural killer cell responsesin vivo. However, the role of humoral immunity and viral modulation of anti-CMV antibodies has not been studied in this model. There is evidence fromin vitrostudies that HCMVs can evade humoral immunity. By gene mapping and with the help of a novel cell-based reporter assay system we characterized the first RhCMV encoded IgG-Fcγ binding glycoprotein as a potent antagonist of rhesus FcγR activation. We further demonstrate that, unlike evasion of T cell immunity, this viral Fcγ receptor is not required to overcome anti-CMV immunity to establish secondary infections. These findings enable more detailed studies of thein vivoconsequences of CMV evasion from IgG responses in nonhuman primate models.


2000 ◽  
Vol 74 (16) ◽  
pp. 7628-7635 ◽  
Author(s):  
M. Kahl ◽  
D. Siegel-Axel ◽  
S. Stenglein ◽  
G. ◽  
Jahn ◽  
...  

ABSTRACT Endothelial cells (EC) are common targets of permissive infection by human cytomegalovirus (HCMV) in vivo during acute disease. However, studies of HCMV-EC interactions in vitro have generated discordant results. While lytic infection of cultured venous EC has been well established, Fish et al. (K. N. Fish, C. Soderberg Naucler, L. K. Mills, S. Stenglein, and J. A. Nelson, J. Virol. 72:5661–5668) have reported noncytopathic persistence of the virus in cultured aortic EC. We propose that interstrain differences in viral host cell tropism rather than the vascular bed of origin of infected EC might account for these discrepancies. In the present investigation we compared the responses of EC derived from human adult iliac artery, placental microvasculature, and umbilical vein to infection with various HCMV strains. Regardless of the vascular bed of origin, infection with EC-propagated HCMV strains induced 100% efficient cytopathic change progressing to complete lysis of inoculated monolayers. While fibroblast-propagated strains persisted at low titer in infected arterial EC cultures, they were also cytolytic for individual infected cells. The finding of cytopathic lytic infection of arterial EC by HCMV implicates a mechanism of vascular injury in the pathogenesis of HCMV infection.


2008 ◽  
Vol 82 (22) ◽  
pp. 11383-11397 ◽  
Author(s):  
Rebecca L. Sanders ◽  
Christia J. Del Rosario ◽  
Elizabeth A. White ◽  
Deborah H. Spector

ABSTRACT The major immediate-early (IE) region of human cytomegalovirus encodes two IE proteins, IE1 72 and IE2 86, that are translated from alternatively spliced transcripts that differ in their 3′ ends. Two other proteins that correspond to the C-terminal region of IE2 86, IE2 60 and IE2 40, are expressed at late times. In this study, we used IE2 mutant viruses to examine the mechanism by which IE2 86, IE2 60, and IE2 40 affect the expression of a viral DNA replication factor, UL84. Deletion of amino acids (aa) 136 to 290 of IE2 86 results in a significant decrease in UL84 protein during the infection. This loss of UL84 is both proteasome and calpain independent, and the stability of the protein in the context of infection with the mutant remains unaffected. The RNA for UL84 is expressed to normal levels in the mutant virus-infected cells, as are the RNAs for two other proteins encoded by this region, UL85 and UL86. Moreover, nuclear-to-cytoplasmic transport and the distribution of the UL84 mRNA on polysomes are unaffected. A region between aa 290 and 369 of IE2 86 contributes to the UL84-IE2 86 interaction in vivo and in vitro. IE2 86, IE2 60, and IE2 40 are each able to interact with UL84 in the mutant-infected cells, suggesting that these interactions may be important for the roles of UL84 and the IE2 proteins. Thus, these data have defined the contribution of IE2 86, IE2 60, and IE2 40 to the efficient expression of UL84 throughout the infection.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


Sign in / Sign up

Export Citation Format

Share Document