Converging Evidence That Neural Plasticity Underlies Transcranial Direct-Current Stimulation

2021 ◽  
Vol 33 (1) ◽  
pp. 146-157
Author(s):  
Chong Zhao ◽  
Geoffrey F. Woodman

It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Framorando ◽  
Tianlan Cai ◽  
Yi Wang ◽  
Alan J. Pegna

AbstractTranscranial Direct Current Stimulation (tDCS) has shown that stimulation of Dorsolateral Prefrontal Cortex (DLPFC) facilitates task performance in working-memory tasks. However, little is known about its potential effects on effort. This study examined whether tDCS affects effort during a working-memory task. Participants received anodal, cathodal and sham stimulation over DLPFC across three sessions before carrying out a 2-back task. During the task, effort-related cardiovascular measures were recorded—especially the Initial Systolic Time Interval (ISTI). Results showed that anodal stimulation produced a shorter ISTI, indicating a greater effort compared to cathodal and sham conditions, where effort was lower. These findings demonstrate that anodal stimulation helps participants to maintain engagement in a highly demanding task (by increasing task mastery), without which they would otherwise disengage. This study is the first to show that tDCS impacts the extent of effort engaged by individuals during a difficult task.


Metallomics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 397-405
Author(s):  
Agata Ziomber ◽  
Artur Dawid Surowka ◽  
Lucyna Antkiewicz-Michaluk ◽  
Irena Romanska ◽  
Pawel Wrobel ◽  
...  

A new methodology for a combined Fe, Cu, Zn and neurometabolite analysis in the brain is reported.


Author(s):  
Jacky Au ◽  
Martin Buschkuehl ◽  
Susanne M. Jaeggi

The aim of this chapter is to contribute to the discussion of the cognitive neuroscience of brain stimulation. In doing so, the authors emphasize work from their own laboratory that focuses both on working memory training and transcranial direct current stimulation. Transcranial direct current stimulation is one of the most commonly used and extensively researched methods of transcranial electrical stimulation. The chapter focuses on implementation of transcranial direct current stimulation to enhance and inform research on working memory training, and not on the underlying mechanisms of transcranial direct current stimulation. Thus, while respecting the intricacies and unknowns of the inner workings of electrical stimulation on the brain, the chapter relies on the premise that transcranial direct current stimulation is able to directly affect the electrophysiological profile of the brain and provides evidence that this in turn can influence behavior given the right parameters.


2019 ◽  
Vol 12 (4) ◽  
pp. 1086-1088 ◽  
Author(s):  
Ashlee M. Hendy ◽  
Helen Macpherson ◽  
Nathan D. Nuzum ◽  
Paul A. Della Gatta ◽  
Sarah E. Alexander ◽  
...  

2019 ◽  
pp. 105971231987997 ◽  
Author(s):  
Atefeh Azarpaikan ◽  
HamidReza Taherii Torbati ◽  
Mehdi Sohrabi ◽  
Reza Boostani ◽  
Majid Ghoshuni

Transcranial direct current stimulation (tDCS) can shift neuronal membrane excitability by applying a weak slow electric current to the brain through the scalp. Attendant electroencephalography (EEG) can provide valuable information about the tDCS mechanisms. This study investigated the effects of anodal tDCS on parietal cortex and cerebellum activity to reveal possible modulation of spontaneous oscillatory brain activity. Timing of the tDCS priming protocol in relation to the intervention especially with respect to bimanual coordination task was also studied. EEG activity was measured in 120 healthy participants before and after sessions of anodal stimulation of the parietal cortex and cerebellum to detect the tDCS-induced alterations. Variations of the delta, theta, alpha, beta, and sensorimotor rhythm (SMR) power bands were analyzed using a MATLAB program. The results showed that anodal parietal and cerebellar tDCS cause changes in brain wave frequencies. They also showed an increase in alpha, beta, and SMR power bands during stimulation sessions for during stimulation parietal group ( p ≤ .01). Also, theta, alpha, beta, and SMR power bands were increased in during stimulation cerebellum group in stimulation sessions and 48 h later ( p ≤ .01). Moreover, the results revealed that the tDCS intervention led to a variety of activations in some areas of the brain. Altogether, the cerebellar tDCS during motor task had a significant improvement in off-line learning.


2017 ◽  
Vol 29 (9) ◽  
pp. 1498-1508 ◽  
Author(s):  
Benjamin Katz ◽  
Jacky Au ◽  
Martin Buschkuehl ◽  
Tessa Abagis ◽  
Chelsea Zabel ◽  
...  

A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.


Sign in / Sign up

Export Citation Format

Share Document