scholarly journals Activity-dependent modulation of synapse-regulating genes in astrocytes

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Isabella Farhy-Tselnicker ◽  
Matthew M Boisvert ◽  
Hanqing Liu ◽  
Cari Dowling ◽  
Galina A Erikson ◽  
...  

Astrocytes regulate the formation and function of neuronal synapses via multiple signals, however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually-evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development are also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, highlighting astrocytes as a target to manipulate in neurodevelopmental disorders.

2020 ◽  
Author(s):  
I Farhy-Tselnicker ◽  
MM Boisvert ◽  
H Liu ◽  
C Dowling ◽  
GA Erikson ◽  
...  

SummaryAstrocytes regulate the formation and function of neuronal synapses via multiple signals, however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually-evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development are also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, identifying astrocytes as a target to manipulate in neurodevelopmental disorders.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Maurizio De Pittà ◽  
Nicolas Brunel

Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.


2019 ◽  
Author(s):  
Gabrielle Devienne ◽  
Sandrine Picaud ◽  
Ivan Cohen ◽  
Juliette Piquet ◽  
Ludovic Tricoire ◽  
...  

ABSTRACTPerineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory interneurons marks the closure of critical periods of high plasticity, whereas PNN removal reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic in vivo approaches in the adult mouse visual cortex, we found that transient electrical silencing of PV interneurons, directly or through inhibition of local excitatory neurons, induced PNN regression. Conversely, excitation of either neuron types did not reduce the PNN. We also observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared to their untransduced neighbors, and confirmed that single PV interneurons express multiple genes enabling cell-autonomous control of their own PNN density. Our results indicate that PNNs are dynamically regulated in the adult by PV neurons acting as sensors of their local microcircuit activities. PNN regulation provides individual PV neurons with an activity-dependent mechanism to control the local remodeling of adult cortical circuits.


2007 ◽  
Vol 304 (1) ◽  
pp. 62-74 ◽  
Author(s):  
Laure Guenin ◽  
Yaël Grosjean ◽  
Stéphane Fraichard ◽  
Angel Acebes ◽  
Fawzia Baba-Aissa ◽  
...  

Author(s):  
I. Rhim ◽  
G. Coello-Reyes ◽  
I. Nauhaus

ABSTRACTVisual input to primary visual cortex (V1) depends on highly adaptive filtering in the retina. In turn, isolation of V1 computations to study cortical circuits requires control over retinal adaption and its corresponding spatio-temporal-chromatic output. Here, we first measure the balance of input to V1 from the three main photoreceptor opsins – M-opsin, S-opsin, and rhodopsin – as a function of light adaption and retinotopy. Results show that V1 is rod-mediated in common laboratory settings, yet cone-mediated in natural daylight, as evidenced by exclusive sensitivity to UV wavelengths via cone S-opsin in the upper visual field. Next, we show that cone-mediated V1 responds to 2.5-fold higher temporal frequencies than rod-mediated V1. Furthermore, cone-mediated V1 has smaller RFs, yet similar spatial frequency tuning. V1 responses in rod-deficient (Gnat1−/−) mice confirm that the effects are due to differences in photoreceptor contribution. This study provides foundation for using mouse V1 to study cortical circuits.


2019 ◽  
Vol 5 (3) ◽  
pp. 147-161 ◽  
Author(s):  
Nicholas E. Clifton ◽  
Simon Trent ◽  
Kerrie L. Thomas ◽  
Jeremy Hall

Sign in / Sign up

Export Citation Format

Share Document