scholarly journals Towards a Caribou Habitat Management Strategy for Northwestern Ontario: Running the Gauntlet

Rangifer ◽  
1996 ◽  
Vol 16 (4) ◽  
pp. 159 ◽  
Author(s):  
Gerald D. Racey ◽  
Edward R. Armstrong

A management strategy for woodland caribou (Rangifer tarandus caribou) habitat is being developed in northwestern Ontario. This strategy is based upon a set of draft Timber Management Guidelines for the Provision of Woodland Caribou Habitat. These guidelines recommend maintaining a sustainable supply of winter habitat within large tracts of old forest, protecting calving areas and minimizing human disturbance. Due to the large temporal and spatial scale of caribou habitat management, an ecosystem-based approach is recommended. Public response to the strategy shows a strong dichotomy between environmental and utilitarian values among all the major stakeholder groups. The major issues raised by the public include security of industrial wood supply, quality of the knowledge base, level of awareness of caribou, economic impacts on remote communities, concern about environmental impacts and silvicultural know-how. The government is responding to these concerns as the strategy evolves. Current emphasis is placed on increasing awareness of the public, training resource managers in caribou biology, management and habitat planning, implementing interim habitat management prescriptions and studying the potential impact on wood supply. The final direction for a northwestern Ontario strategy to conserve woodland caribou habitat has yet to be decided, although a commitment has been made to strive for the conservation of woodland caribou populations and their habitat.

Rangifer ◽  
1998 ◽  
Vol 18 (5) ◽  
pp. 157 ◽  
Author(s):  
K. Antoniak ◽  
H.G. Cumming

Two summers' field surveys at 9 locations in northwestern Ontario showed that woodland caribou (Rangifer tarandus caribou) wintering areas supported jack pine and black spruce stands with low tree densities (mean 1552 trees/ ha, 39% of a fully stocked stand), low basal areas (mean 14.14 m2/ha), low volumes (mean 116 mVha, 68% of Normal Yield Tables) and short heights (95% of stands 12 m or less). Ecologically, most sights were classed V30. Significantly more lichen (averaging 39% lichen ground cover) was found on plots used by caribou. Three measured areas showed few shrubs, possibly enhancing escape possibilities and reducing browse attractive to moose. An HIS model predicted known locations of caribou winter habitat from FRI data with 76% accuracy. Landsat imagery theme 3 (open conifer) produced 74% accuracy. Combining these methods permitted prediction of all 50 test sites. The low volumes of timber found in caribou wintering areas suggest that setting aside reserves for caribou winter habitat would not sacrifice as much wood product value as might at first appear.


Author(s):  
Brian Coupal ◽  
Paula Bentham

The federal Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population in Canada, identifies coordinated actions to reclaim woodland caribou habitat as a key step to meeting current and future caribou population objectives. Actions include restoring industrial landscape features such as roads, seismic lines, pipelines, cut-lines, and cleared areas in an effort to reduce landscape fragmentation and the changes in caribou population dynamics associated with changing predator-prey dynamics in highly fragmented landscapes. Reliance on habitat restoration as a recovery action within the federal Recovery Strategy is high, identifying 65% undisturbed habitat in a caribou range as the threshold to providing a 60% chance that a local population will be self-sustaining. In alignment with the federal Recovery Strategy, Alberta’s Provincial Woodland Caribou Policy identifies habitat restoration as a critical component of long-term caribou habitat management. Habitat restoration initiatives of Alberta’s historical industrial footprint within caribou ranges began in 2001 and have largely focused on linear corridors, including pipelines. Initiatives include revegetation treatments, access control programs and studies, and restricting the growth of plant species that are favourable to moose and deer, the primary prey for wolves. Habitat restoration for pipelines also includes pre-construction planning to reduce disturbance and create line-of-sight breaks, and construction techniques that promote natural vegetation recovery. Lessons learned from habitat restoration programs implemented on pipeline projects in northeastern Alberta will be shared as an opportunity to improve common understanding of restoration techniques, the barriers to implementation, and potential outcomes.


Rangifer ◽  
2005 ◽  
Vol 25 (4) ◽  
pp. 89
Author(s):  
Paula R. Bentham

Since 1985, woodland caribou (Rangifer tarandus caribou) have been designated as a threatened species in Alberta. Populations studied since the 1970s have been stable or declining, with no population increases documented. Resource expansion into previously undeveloped areas and associated increases in access have been implicated as possible causes for the declines. To facilitate development on caribou ranges, while ensuring the integrity and supply of caribou habitat, standing committees have been formed. The primary role of the committees is to act as advisory bodies to the government and to search for effective and efficient industrial operating guidelines. Recent research has been conducted on the responses of woodland caribou ecotypes to increased human and predator access. Based on this research, operating guidelines have been refined and implemented through Caribou Protection Plans. I discuss how the current operating guidelines are put into practice and linked to the Environmental Assessment process within the Oil Sands Region of Alberta. In particular, I discuss the origination of impact predictions, specific mitigation measures to reduce impacts and monitoring.


Rangifer ◽  
2005 ◽  
Vol 25 (4) ◽  
pp. 143 ◽  
Author(s):  
D. Joanne Saher ◽  
Fiona K.A. Schmiegelow

Woodland caribou (Rangifer tarandus caribou) are a threatened species throughout Canada. Special management is therefore required to ensure habitat needs are met, particularly because much of their current distribution is heavily influenced by resource extraction activities. Although winter habitat is thought to be limiting and is the primary focus of conservation efforts, maintaining connectivity between summer and winter ranges has received little attention. We used global positioning system data from an interprovincial, woodland caribou herd to define migratory movements on a relatively pristine range. Non-linear models indicated that caribou movement during migration was punctuated; caribou traveled for some distance (movement phase) followed by a pause (resting/foraging phase). We then developed resource selection functions (RSFs), using case-controlled logistic regression, to describe resting/foraging sites and movement sites, at the landscape scale. The RSFs indicated that caribou traveled through areas that were less rugged and closer to water than random and that resting/foraging sites were associated with older forests that have a greater component of pine, and are further from water than were random available locations. This approach to analyzing animal location data allowed us to identify two patterns of habitat selection (travel and foraging/resting) for caribou during the migratory period. Resultant models are important tools for land use planning to ensure that connectivity between caribou summer and winter ranges is maintained.


2020 ◽  
Vol 98 (11) ◽  
pp. 751-760
Author(s):  
J.A. Silva ◽  
S.E. Nielsen ◽  
P.D. McLoughlin ◽  
A.R. Rodgers ◽  
C. Hague ◽  
...  

By regulating successional dynamics in Canada’s boreal forest, fires can affect the distribution of the Threatened woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)). Caribou tend to avoid areas burned within the last 40 years; however, few studies have compared pre-fire and post-fire caribou observations. In this study, we used caribou GPS locations from the Boreal Shield of Saskatchewan, Canada, to assess the short-term response of caribou to areas that burned while they were collared (hereafter recent burns). We used a “before–after, control–impact” design to compare the overlap of pre-fire and post-fire seasonal home ranges to the overlap of year-to-year seasonal home ranges. Caribou rarely encountered recent burns and when they did, they adjusted their space use in variable and complex ways that were largely indistinguishable from regular, interannual variation. Caribou tended to reduce use of recent burns in summer–autumn and winter, but not during the calving season, in some cases shifting their home range to incorporate more burned habitat. We conclude that recently burned areas (<5 years) may provide habitat value to woodland caribou, particularly during the calving season, requiring a more flexible approach to interpret fire in habitat management strategies.


2017 ◽  
Vol 93 (03) ◽  
pp. 204-212 ◽  
Author(s):  
Sean B. Rapai ◽  
Duncan McColl ◽  
Richard Troy McMullin

The development of habitat restoration techniques for restoring critical woodland caribou (Rangifer tarandus caribou) winter habitat will play an important role in meeting the management thresholds in woodland caribou recovery plans. The goal is to restore disturbed environments within critical winter habitat for the declining woodland caribou. Woodland caribou are diet specialists, utilizing lichen-rich habitat for forage during winter months. Cladonia sub-genus Cladina is the most frequently eaten species during this time. Herein, we provide: 1) A review of previously used methods for transplanting Cladonia sub-genus Cladina and their feasibility in restoring woodland caribou winter habitat; 2) A stepby- step protocol on how to carry out a terrestrial lichen transplant program (using Cladonia sub-genus Cladina and C. uncialis); and, 3) An evaluation of our protocol through the establishment of a case study in northern British Columbia. Our results indicate that transplanting C. sub-genus Cladina fragments is the most efficient technique for transplanting terrestrial lichen communities, but transplanting lichen ‘patches’ or ‘mats’ may also be effective.


Rangifer ◽  
2007 ◽  
Vol 27 (4) ◽  
pp. 181 ◽  
Author(s):  
Rob Florkiewicz ◽  
Ramona Maraj ◽  
Troy Hegel ◽  
Marcus Waterreus

Carcross woodland caribou (Rangifer tarandus caribou) numbers are increasing as a result of an intensive management and recovery program initiated in 1993. In the last 13 years, three overlapping First Nation land claim agreements were settled resulting in a complicated array of private and public land management authorities on this winter range, situated in the Whitehorse periphery. Twelve years of VHF radio-collar data (1994-2005) and 5 years of GPS radio-collar data (2000-2005) for female caribou were assessed to determine winter concentration areas and important winter habitats. We contrasted locations from 11 GPS radio-collared caribou with land cover classes, derived from classified Landsat 7 imagery, to evaluate the distribution and abundance of preferred habitats within this winter range. We found significant use of Open Needle Leaf lichen vegetation classes and avoidance of the relatively more abundant Closed Needle Leaf class. Our resource selection function model validated the preference for Open Needle Leaf Lichen and determined that caribou were spaced significantly further from an estimate of the human Zone of Influence (ZOI) than was expected from random locations. While our assessment determined that 64% of the winter range was located outside of either private lands or land influenced by human activity, key winter vegetation classes were under-represented within this area. If caribou are to successfully recover on this landscape and persist through time it is essential to manage, through meaningful participation among land management authorities, the remaining caribou habitat for environmental rather than human consumptive values.


Rangifer ◽  
1990 ◽  
Vol 10 (3) ◽  
pp. 139 ◽  
Author(s):  
Susan K. Stevenson

Habitat management for woodland caribou (Rangifer tarandus caribou) in southeastern British Columbia has generally focussed on protecting old-growth forests from logging. As that strategy becomes more difficult to maintain, biologists are beginning to explore opportunities to manage second-growth stands to provide arboreal lichens and other habitat resources important to caribou. Special harvesting and stand management practices are being developed and formulated into strategies for maintaining caribou populations in managed stands.


Rangifer ◽  
1998 ◽  
Vol 18 (5) ◽  
pp. 25
Author(s):  
David L. Euler

Ecosystem management is emerging as an important concept in managing forests. Although the basic conceptual idea is not new, important defining principles are developing that elucidate some of the specific attributes of ecosystem management. These principles include: the maintenance of all ecosystems in the managed forest, rhe emulation of natural disturbance patterns on rhe landscape and the insurance that structure and function of forested ecosystems are conserved. Forest management has an impact on woodland caribou (Rangifer tarandus caribou), although the presence of wolves (Canis lupus) and moose (Alces alces) in the same northern ecosystems also affects the caribou-forestry interacrion. Specific management for caribou as a featured species has been proposed, based on managing large landscape blocks. Ecosystem management would also produce habitat in a manner that might accomplish the goal of conserving woodland caribou as well as maintaining other important ecosystem functions.


2007 ◽  
Vol 37 (6) ◽  
pp. 1082-1092 ◽  
Author(s):  
Robert Serrouya ◽  
Bruce N. McLellan ◽  
John P. Flaa

Mountain caribou, an endangered ecotype of woodland caribou ( Rangifer tarandus caribou Gmelin, 1788), live in late-successional coniferous forests where they depend largely on arboreal lichens as winter forage. While radio-telemetry has been used to understand caribou habitat selection patterns at broad scales among and within populations, here we use snow-trailing in old cedar–hemlock forests between 1992 and 2003 to study three finer scales of habitat selection: (1) forest stands used for foraging from available forest stands (among-stand selection), (2) foraging paths within selected stands relative to random paths within those same stands (within-stand selection), and (3) feeding items along foraging paths. Relative to stands that were available on the landscape, caribou selected stands with more windthrown trees and standing snags. Within stands, caribou selected paths that had more live trees, snags with branches and bark, and trees with larger diameters. All of these habitat attributes facilitate access to arboreal lichen. Of the potential forage items encountered along foraging paths, caribou preferred to feed on windthrown trees, lichen litterfall and falsebox ( Paxistima myrsinites (Pursh.) Raf.). Our results go beyond telemetry studies by revealing that not all old forests are of equal value to mountain caribou. Prioritization among old stands will help refine conservation measures, as will silvicultural systems that incorporate key habitat attributes to maintain winter habitat in low-elevation cedar–hemlock ecosystems.


Sign in / Sign up

Export Citation Format

Share Document