scholarly journals Fluorescence Detection of Cosmic Ray Air Showers Between 1016.5and 1018.5 eV with the Telescope Array Low Energy Extension (TALE)

Author(s):  
Zachary Zundel
2019 ◽  
Vol 208 ◽  
pp. 08002
Author(s):  
Shoichi Ogio

The Telescope Array is the largest hybrid cosmic ray detector in the Northern hemisphere designed to measure primary particles in 4 PeV to 100 EeV range. The main TA detector consists of an air shower array of 507 plastic scintillation counters on a 1.2 km square grid and fluorescence detectors at three stations overlooking the sky above the air shower array. The experiment and its recent measurements - spectrum, composition, and anisotropy - is reviewed. Recently the construction of the TA Low energy Extension (TALE) detector, which consists of an additional fluorescence detector and an infill array, was finished. TALE lowers the energy threshold of TA down to 4 PeV. We are also constructing the TAx4 detector to increase statistics in particular at the highest energies. The current status and the future prospects of these new TAx4 experiments is reported.


Author(s):  
Alexander Shepetov ◽  
Alexander Chubenko ◽  
Bachtiyar Iskhakov ◽  
Olga Kryakunova ◽  
Orazaly Kalikulov ◽  
...  

2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


2018 ◽  
Vol 96 (7) ◽  
pp. 673-676
Author(s):  
Şeyma Atik Yılmaz ◽  
Ali Yılmaz ◽  
Haluk Denizli ◽  
Kaan Yüksel Oyulmaz

CORSIKA (COsmic Ray SImulations for Kascade) has various features in the creation of the extensive air showers with several characteristics where the users can configure the input card to achieve the desired result. ECUT is a parameter defined as the low energy cutoff of the particle kinetic energy for hadrons, muons, electrons, and photons. We investigate the effect of the different ECUT values on the detected particles in 107 – 5 × 108 GeV primary particle energy range where π–π0 decay channel chosen with 5 km shower development length. The selected ECUT values in this study are 0.05 and 0.1 GeV for both hadrons and muons and 0.05 GeV for electrons and photons. The effect of the reducing by half on the energy cutoff value is studied for the detector array located on an inclined plane, which is planned for upward τ detection.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
R. U. Abbasi ◽  
M. Abe ◽  
T. Abu-Zayyad ◽  
M. Allen ◽  
R. Azuma ◽  
...  

2019 ◽  
Vol 197 ◽  
pp. 02010
Author(s):  
Stanislav Stefanik ◽  
Dalibor Nosek

The future ground-based gamma-ray observatory, the Cherenkov Telescope Array (CTA) will require reliable monitoring of the atmosphere which is an inherent part of the detector. We discuss here the implementation of the extended method of the Cherenkov Transparency Coeffcient for the atmospheric calibration for the CTA. The method estimates the atmospheric transmission of Cherenkov light, relying on the measurement of the rates of cosmic ray-induced air showers that trigger different pairs of telescopes. We examine the performance of our approach utilizing Monte Carlo simulations assuming various atmospheric conditions and CTA observation configurations.


2018 ◽  
Vol 182 ◽  
pp. 02122
Author(s):  
Ryuji Takeishi

The origin of ultra-high energy cosmic rays (UHECRs) has been a longstanding mystery. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECR by studying the energy spectrum, mass composition and anisotropy of cosmic rays. TA is a hybrid detector comprised of three air fluorescence stations which measure the fluorescence light induced from cosmic ray extensive air showers, and 507 surface scintillator counters which sample charged particles from air showers on the ground. We present the cosmic ray spectrum observed with the TA experiment. We also discuss our results from measurement of the mass composition. In addition, we present the results from the analysis of anisotropy, including the excess of observed events in a region of the northern sky at the highest energy. Finally, we introduce the TAx4 experiment which quadruples TA, and the TA low energy extension (TALE) experiment.


2019 ◽  
Vol 210 ◽  
pp. 03005
Author(s):  
Karen Andeen ◽  
Matthias Plum

The IceCube Neutrino Observatory at the geographic South Pole, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, low energy muons on the periphery of the showers, and high energy muons in the deep In Ice array of IceCube. These measurements enable determination of the energy spectrum and composition of cosmic rays from PeV to EeV energies, the anisotropy in the distribution of cosmic ray arrival directions, the muon density of cosmic ray air showers, and the PeV gamma-ray flux. Furthermore, IceTop can be used as a veto for the neutrino measurements. The latest results from these IceTop analyses will be presented along with future plans.


2019 ◽  
Vol 210 ◽  
pp. 05001
Author(s):  
Douglas R. Bergman ◽  
Yoshiki Tsunesada ◽  
John F. Krizmanic ◽  
Yugo Omura

The Non-Imaging CHErenkov (NICHE) Array has been deployed at the Telescope Array Middle Drum site, and has been collecting data. We see many coincidences with TALE fluorescence mirror events, establishing hybrid imaging/non-imaging air-Cherenkov observation of cosmic ray air showers. We have verified the TALE Profile-Constrained Geometry Fit of Cherenkov events at the 3° level. We have performed hybrid timing fits between NICHE and TALE and have established that the growth in the FWHM of the NICHE signal with the distance of the shower core depends on the height of the shower maximum.


Sign in / Sign up

Export Citation Format

Share Document