scholarly journals Time and Magnetic Field Variations of Magnetic Structure in the Triangular Lattice Magnet Ca3Co2O6

2018 ◽  
Vol 87 (11) ◽  
pp. 114703 ◽  
Author(s):  
Kiyoichiro Motoya ◽  
Takumi Kihara ◽  
Hiroyuki Nojiri ◽  
Yoshiya Uwatoko ◽  
Masaaki Matsuda ◽  
...  
2021 ◽  
pp. 1-10
Author(s):  
Akai Murtazaev ◽  
Magomedzagir Badiev ◽  
Magomedsheykh Ramazanov ◽  
Magomed Magomedov

1991 ◽  
Vol 05 (11) ◽  
pp. 779-787
Author(s):  
K. SUGAWARA ◽  
D.J. BAAR ◽  
Y. SHIOHARA ◽  
S. TANAKA

The ESR linewidth (∆H pp ) of DPPH coated on the surface of powder specimens of Y 1 Ba 2 Cu 3 O y has been studied under various magnetic field and temperature conditions. ∆H pp increases substantially with decreasing temperature in the field cooled case, whereas almost no linewidth broadening was found in the zero field cooled case. ∆H pp was found to be sensitive to the applied magnetic field. This effect was very pronounced at temperatures lower than 40 K, but decreased strongly with increasing temperature. The broadening of the resonance lineshape has been attributed to spatial and temporal variations of the fluxon distribution in the powder particles.


2007 ◽  
Vol 73 (1) ◽  
pp. 89-115 ◽  
Author(s):  
LARS G. WESTERBERG ◽  
HANS O. ÅKERSTEDT

Abstract.A compressible model of the magnetosheath plasma flow is considered. Magnetic reconnection is assumed to occur in a region stretching from the sub-Solar point to the north. Two locations of the reconnection site are treated: two and four Earth radii from the sub-Solar point, respectively. By treating the transition layer as very thin, we solve the governing equations approximately using the method of matched asymptotic expansions. The behavior of the magnetic field and the plasma velocity close to a reconnection site during the transition from the magnetosheath to the magnetosphere is investigated. We also obtain the development of the transition layer thickness north and south of the reconnection point. The magnetopause transition layer is represented by a large-amplitude Alfvén wave implying that the density is approximately the same across the magnetopause boundary. In order to match the solutions we consider a compressible ideal magnetohydrodynamic model describing density, velocity and magnetic field variations along the outer magnetopause boundary. We also compare the analytical results with solutions from a numerical simulation. The compressible effects on the structure of the magnetic field and the total velocity evolution are visible but not dramatic. It is shown that the transition layer north of the reconnection point is thinner than to the south. The effect is stronger for reconnection at higher latitudes.


1998 ◽  
Vol 41 (3) ◽  
Author(s):  
P. Palangio

A broadband two axis flux-gate magnetometer was developed to obtain high sensitivity in magnetotelluric measurements. In magnetotelluric sounding, natural low frequency electromagnetic fields are used to estimate the conductivity of the Earth's interior. Because variations in the natural magnetic field have small amplitude(10-100 pT) in the frequency range 1 Hz to 100 Hz, highly sensitive magnetic sensors are required. In magnetotelluric measurements two long and heavy solenoids, which must be installed, in the field station, perpendicular to each other (north-south and east-west) and levelled in the horizontal plane are used. The coil is a critical component in magnetotelluric measurements because very slight motions create noise voltages, particularly troublesome in wooded areas; generally the installation takes place in a shallow trench. Moreover the coil records the derivative of the variations rather than the magnetic field variations, consequently the transfer function (amplitude and phase) of this sensor is not constant throughout the frequency range 0.001-100 Hz. The instrument, developed at L'Aquila Geomagnetic Observatory, has a flat response in both amplitude and phase in the frequency band DC-100 Hz, in addition it has low weight, low power, small volume and it is easier to install in the field than induction magnetometers. The sensivity of this magnetometer is 10 pT rms.


2006 ◽  
Vol 50 (5) ◽  
pp. 411-421 ◽  
Author(s):  
V. M. Grigor’ev ◽  
L. V. Ermakova ◽  
A. I. Khlystova

Sign in / Sign up

Export Citation Format

Share Document