MICROWAVE ABSORPTION STUDIES ON HIGH-Tc SUPERCONDUCTORS AND RELATED MATERIALS II: Electron Spin Resonance of DPPH Coated on Y1Ba2Cu3Oy as A Probe of Magnetic Field Variations

1991 ◽  
Vol 05 (11) ◽  
pp. 779-787
Author(s):  
K. SUGAWARA ◽  
D.J. BAAR ◽  
Y. SHIOHARA ◽  
S. TANAKA

The ESR linewidth (∆H pp ) of DPPH coated on the surface of powder specimens of Y 1 Ba 2 Cu 3 O y has been studied under various magnetic field and temperature conditions. ∆H pp increases substantially with decreasing temperature in the field cooled case, whereas almost no linewidth broadening was found in the zero field cooled case. ∆H pp was found to be sensitive to the applied magnetic field. This effect was very pronounced at temperatures lower than 40 K, but decreased strongly with increasing temperature. The broadening of the resonance lineshape has been attributed to spatial and temporal variations of the fluxon distribution in the powder particles.

1992 ◽  
Vol 06 (05) ◽  
pp. 265-272 ◽  
Author(s):  
K. SUGAWARA ◽  
T. SUGIMOTO ◽  
D.J. BAAR ◽  
Y. SHIOHARA ◽  
S. TANAKA

Non-resonant microwave absorption (NRMA) studies have been done for Bi-Sr-Ca-Cu-O (BSCCO) films with thicknesses of 30 Å and 15 Å fabricated on MgO substrate by MOCVD. For the latter two kinds of samples have been fabricated: BSCCO/MgO and BiOx/BSCCO/MgO . NRMA signals have been detected up to about 70–75 K for all the samples. The lower critical magnetic field H c1 * of the 30 Å film was severely increased by the application of a magnetic field of several kGauss, whereas it is almost unaffected in the case of 15 Å films. H c1 * increases but the signal intensity decreases with increasing temperature for all the 30 Å and 15 Å samples. The temperature dependence of the intensity is quite different from that of thicker films (100 Å and 350 Å), in which the intensity vs. temperature relation has a peak (or peaks) at particular temperature(s).


1992 ◽  
Vol 06 (14) ◽  
pp. 879-889
Author(s):  
K. SUGAWARA ◽  
S. TANAKA

ESR of DPPH coated on Bi - Sr - Ca - Cu - O films fabricated on MgO (100) substrates by MOCVD have been studied for samples with different thicknesses, 1000 Å and 100 Å. Temperature dependence of the ESR peak-to-peak linewidth, ΔH pp , revealed that ΔH pp , increases with film thickness. The excess ESR linewidth, δ (ΔH pp ) was also analyzed in terms of (1-t)α, with t=T/T c , giving for example α=4±1 for the 1000 Å thick sample. The ESR lineshapes were distorted by rotating the samples in applied magnetic fields. Severe distortion was found for the 1000 Å sample below about 30 K, but the distortion almost disappears at temperatures above 30 K. The applied magnetic field effects were also examined in both field-cooled and zero-field-cooled cases.


2021 ◽  
Author(s):  
Kirill Kuznetsov ◽  
Kiryukhina Elena ◽  
Bulychev Andrey ◽  
Lygin Ivan

<p>Magnetic surveys are commonly used for solving variety of geotechnical and geological challenges in offshore areas, jointly with a set of other geophysical methods. The most popular technique employed is hydromagnetic surveying with towed magnetometers. One of the most significant challenges encountered during processing of the magnetic data is related to temporal variations of the Earth's magnetic field. Accounting for diurnal magnetic field variations is often done by carrying out differential hydromagnetic surveys, a technique developed in the 1980-s. It is based on simultaneous measurements of the magnetic field using two sensors towed behind the vessel with a given separation. This technique allows to calculate along-course gradient which is free of magnetic field temporal variations. This measurement system resembles a gradiometer, with the distance between two sensors being referred to as the base of the gradiometer. It is possible to calculate anomalous magnetic field by integrating obtained magnetic field gradient. Studies have shown that accuracy of its reconstruction decreases with increasing base of the gradiometer. This becomes most significant when distance between the sensors and sources of magnetic field anomalies is small. This situation occur when the survey area is located in shallow water (i.e. for shallow marine, river or lake surveys).</p><p>An approach for deriving magnetic anomalies and accounting for diurnal variations in differential hydromagnetic surveys based on the frequency (spectral) representation of the measurements was proposed in 1987 [Melikhov, 1987]. This approach utilizes the fact that it is possible to reconstruct the spectrum of magnetic field anomalies along the vessel course from the spectra of measured signals from the first S<sub>1</sub>(ω) and second S<sub>2</sub>(ω) sensors. Assuming that the sensors are located at the same depth, it can be achieved via the following transform:</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.3d3911bac60061487501161/sdaolpUECMynit/12UGE&app=m&a=0&c=ff23bad5ed5181be02f7ef7ab5e8d6e4&ct=x&pn=gepj.elif&d=1" alt="" width="192" height="43"></p><p>where ω - spatial frequency, <em>l</em> - base of the gradiometer, and <em>i</em> - imaginary unit. Assuming that at a single moment in time magnetic field variations equally affect both sensors, resulting Fourier spectrum T(ω) will correspond the spectrum of anomalous magnetic field, free of the magnetic variations. It should be noted that, similar to the along-course gradient integration approach, anomalous magnetic field is restored to a certain accuracy level.</p><p>Estimates made on model examples showed that accuracy of the field reconstruction using this method is comparable to the accuracy levels of modern marine magnetic surveys (±1-3 nT). It could be noted that for gradiometer bases comparable or larger than depths to magnetic anomaly sources, errors of the field reconstruction are significantly lower for the spectral transformation-based approach compared to along-course gradient integration.</p><p>References:</p><p>Melikhov V.R., Bulychev A.A., Shamaro A.M. Spectral method for solving the problem of separating the stationary and variable components of the geomagnetic field in hydromagnetic gradiometric surveys // Electromagnetic research. - Moscow. IZMIRAN, 1987. - P. 97-109. (in Russian)</p><p> </p>


1991 ◽  
Vol 05 (09) ◽  
pp. 667-674 ◽  
Author(s):  
K. SUGAWARA ◽  
T. SUGIMOTO ◽  
K. YASUIKE ◽  
D.J. BAAR ◽  
Y. SHIOHARA ◽  
...  

Non-resonant microwave absorption as a function of temperature and magnetic field has been studied in a Bi-Sr-Ca-Cu-O film prepared by MOCVD. A maximum in the absorption as a function of temperature was observed at approximately 60 K. An average Josephson loop diameter of about 0.9~1.5 microns was inferred from the experimental results. The absorption was found to depend on the angle of the film plane relative to the applied field.


1992 ◽  
Vol 06 (11) ◽  
pp. 675-682
Author(s):  
K. SUGAWARA ◽  
T. SUGIMOTO ◽  
Y. SHIOHARA ◽  
S. TANAKA

ESR of DPPH coated on a Bi-Sr-Ca-Cu-O (BSCCO) film (350 Å thick) fabricated on MgO(100) substrate by MOCVD was studied. Temperature dependence of the ESR peak-to-peak linewidth, ΔH pp , and the effect of applied magnetic field on ΔH pp have been studied below about 100 K. The results were compared with those of ESR of DPPH coated on ceramic Y-Ba-Cu-O samples (powder and bulk) made by the MPMG method. The DPPH ESR for the BSCCO film revealed that ΔH pp was independent of applied magnetic field up to about 9 kG. In addition, no similarity between the temperature dependence of the excess ESR linewidth of the DPPH and that of critical current density was found for the BSCCO film. These results for the BSCCO film are different from those for the MPMG YBCO samples.


1991 ◽  
Vol 05 (30) ◽  
pp. 1981-1987 ◽  
Author(s):  
K. SUGAWARA ◽  
T. SUGIMOTO ◽  
D.J. BAAR ◽  
Y. SHIOHARA ◽  
S. TANAKA

Non-resonant microwave absorption (NRMA) studies have been done on a 100 Å thick Bi-Sr-Ca-Cu-O film fabricated on MgO substrate by MOCVD. Temperature dependence of NRMA intensity reveals that the intensity becomes maximum at around 30 K, 40 K and 55 K, and minimum at around 35 K and 50 K. The sign (or phase) of the signal changes by passing through these intensity minimum temperatures. Furthermore, the linewidths of the NRMA signals anomalously increase in the vicinity of these temperatures.


1991 ◽  
Vol 05 (13) ◽  
pp. 895-901 ◽  
Author(s):  
K. SUGAWARA ◽  
D. J. BAAR ◽  
Y. SHIOHARA ◽  
S. TANAKA

The ESR of Cu 2+ and Gd 3+ ion in Y 2 Ba 1 Cu 1 O 5 and Gd 2 Ba 1 Cu 1 O 5 has been studied at temperatures from 4 K to room temperature. Particular emphasis has been paid to the ESR linewidths (∆H PP ) and g-values of the ions. The ∆H PP and g-values for Y 2 Ba 1 Cu 1 O 5 were found to have anomalous increments near 15 K, close to the Néel temperature of Y 2 Ba 1 Cu 1 O 5. Similarly, ∆H PP for Gd 2 Ba 1 Cu 1 O 5 had peaks near 12 K. Our analysis reveals that the ESR signal from Gd 2 Ba 1 Cu 1 O 5 is dominated by the Gd 3+ ESR. However, the magnetic ordering may be caused by both Gd-Gd and Gd-Cu interactions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


Sign in / Sign up

Export Citation Format

Share Document