W/WO3−x based three-terminal synapse device with linear conductance change and high on/off ratio for neuromorphic application

2019 ◽  
Vol 12 (2) ◽  
pp. 026503 ◽  
Author(s):  
Jinwon Go ◽  
Yonghun Kim ◽  
Myonghoon Kwak ◽  
Jeonghwan Song ◽  
Solomon Amsalu Chekol ◽  
...  
Keyword(s):  
2016 ◽  
Vol 28 (17) ◽  
pp. 175003 ◽  
Author(s):  
Tsan-Pei Wu ◽  
Xiao-Qun Wang ◽  
Guang-Yu Guo ◽  
Frithjof Anders ◽  
Chung-Hou Chung

1993 ◽  
Vol 265 (1) ◽  
pp. C72-C78 ◽  
Author(s):  
H. Sunose ◽  
K. Ikeda ◽  
Y. Saito ◽  
A. Nishiyama ◽  
T. Takasaka

Single-channel currents of the luminal membrane of marginal cells dissected from the guinea pig cochlea were investigated using the patch-clamp technique. Nonselective cation channels having a linear conductance of 27 pS were activated by depolarization, cytoplasmic Ca2+, and cytoplasmic acidification. Cytoplasmic ATP inactivated the channel. A mixture of 3-isobutyl-1-methylxanthine and forskolin activated a small-conductance Cl channel in the cell-attached mode. On excision in the inside-out mode, the Cl channel was inactivated, but it was reactivated by a cytoplasmic catalytic subunit of protein kinase A with ATP. This Cl channel had a linear conductance of 12 pS, and its activity was little affected by voltage. The sequence of permeation by anions was Br- > Cl > I-. The Cl channel blocker diphenylamine-2-carboxylic acid (3 mM) completely blocked the channel, but 5-nitro-2-(3-phenylpropylamino)-benzoic acid (50 microM) blocked it only partially. The above-mentioned characteristics are similar to those of the well-demonstrated Cl- channel, cystic fibrosis transmembrane regulator.


2011 ◽  
Vol 340 ◽  
pp. 331-336
Author(s):  
Hai Tao Yin ◽  
Xiao Jie Liu ◽  
Wei Long Wan ◽  
Cheng Bao Yao ◽  
Li Na Bai ◽  
...  

We studied transport properties through a noninteracting quantum dots array with a side quantum dot employing the equation of motion method and Green function technique. The linear conductance has been calculated numerically. It is shown that an antiresonance always pinned at the energy level of side quantum dot. The conductance develops Fano line shape when the side quantum dot level is not aligned with that of the quantum dots in the array due to quantum interference through different channels.


2011 ◽  
Vol 25 (12) ◽  
pp. 1671-1680 ◽  
Author(s):  
SHU-GUANG CHENG ◽  
XIAO-JUAN ZHAO ◽  
PEI ZHAO

The electronic transport through a mesoscopic confining region coupled to two spin-orbit coupling semiconductor leads is studied. We mainly focus on how the transport behaviors are affected by the Rashba spin-orbit interaction (SOI), which has been neglected in the previous theoretical papers but indeed exists in the semiconductor leads from the recent experimental results. By using Landauer–Büttiker formula and the non-equilibrium Green's function method, the linear conductance of this device is obtained. The numerical results exhibit that the conductance are similar for the two cases of the absence and the presence of the SOI. It means that the SOI in the leads does not qualitatively affects the transport behaviors. However, in detail, the peaks of the conductance are widened and enhanced by the SOI. In some specific cases, the widening and the enhancement could be very strong.


Sign in / Sign up

Export Citation Format

Share Document