Effects of silicate ion concentration on the formation of ceramic oxide layers produced by plasma electrolytic oxidation on Al alloy

2016 ◽  
Vol 56 (1S) ◽  
pp. 01AB01 ◽  
Author(s):  
Jung-Hyung Lee ◽  
Seong-Jong Kim
2020 ◽  
Vol 58 (6) ◽  
pp. 699
Author(s):  
Quang-Phu Tran ◽  
Van-Da Dao ◽  
Van-Hoi Pham

Plasma electrolytic oxidation (PEO) has earned much attention due to its powerful and easy formation of hard and corrosion-resistant oxide layers on valve metals, such as Al alloys. Here we report the effects of current density (CD) on microstructure and properties of coatings on 6061 Al alloy by PEO using direct current mode. The electrolyte contains the chemicals of Na2SiO3, Na2WO4´2H2O, and NaH2PO2´H2O. The CDs adopted 5.0, 7.5, 10.0, and 12.5 A/dm2, respectively, for a fixed PEO time of 30 min. The thickness, surface morphology, phase composition, hardness, and corrosion resistance of PEO coatings as the function of the applied CD have been studied and discussed. Studied results show the coating thickness is proportional to the applied CD. When the applied CD increases 2.5 times from 5.0 to 12.5 A/dm2, the growth rate of oxide layers increased by more than 3.5 times, from 0.423 to 1.493 μm/min, respectively. SEM images are characterized by a reduction in the ratio of agglomerate-bumps-region/flatten-region as applied CD increases. However, cracks and larger pores appear when the applied CD is higher than 10.0 A/dm2. X-ray diffraction pattern shows that the main phases of Al, g-Al2O3, α-Al2O3, and W are contained in all coatings. PEO coated sample has the highest hardness of 1290 HV and highest polarization resistance of 8.80 ´ 106 Wcm2 obtained at applied CD 10 A/dm2 which shows the best performance of the coating. The variation in coating performance is explained by microstructure details, specifically phases, compositions of oxide-layers, and micro-pores and cracks.


2020 ◽  
Vol 27 (11) ◽  
pp. 2050007
Author(s):  
KOANGYONG HYUN ◽  
JUNG-HYUNG LEE ◽  
SEONG-JONG KIM

Plasma electrolytic oxidation (PEO) is an electrochemical-based surface modification technique that produces oxide layers on valve metals. The PEO process is performed in an electrolyte solution, which offers the possibility of particles’ incorporation into the growing oxide layer. In this study, we employed a PEO technique on a commercial Al alloy in an aqueous suspension of carbon nanotubes (CNTs) to fabricate CNT-incorporated oxide layer. The voltage–time response was recorded during the process. The surface of the resulting oxide layer was characterized by means of a scanning electron microscope (SEM), an energy-dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD). It was found from the SEM observation that the CNTs were successfully incorporated into the oxide layer. The PEO with the addition of CNTs led to a delay in time to breakdown (50[Formula: see text][Formula: see text][Formula: see text]s) and a decrease in breakdown voltage (442[Formula: see text][Formula: see text][Formula: see text]V) in the voltage–time curve. The microstructural feature was clearly distinguishable between the oxide layers produced with and without CNTs: a pancake-like structure for PEO without CNTs, and a doughnut-like structure for PEO with CNTs. However, neither the results of the structure analysis nor the elemental analysis provides a clear indication of carbon, even though the presence of CNTs in the oxide layer is evident, suggesting that further optimization of CNT concentration is required.


2018 ◽  
Vol 751 ◽  
pp. 289-298 ◽  
Author(s):  
Quang-Phu Tran ◽  
Tsung-Shune Chin ◽  
Yu-Cheng Kuo ◽  
Chong-Xun Jin ◽  
Tran Trung ◽  
...  

2015 ◽  
Vol 269 ◽  
pp. 114-118 ◽  
Author(s):  
Yeon Sung Kim ◽  
Hae Woong Yang ◽  
Ki Ryong Shin ◽  
Young Gun Ko ◽  
Dong Hyuk Shin

2010 ◽  
Vol 504 ◽  
pp. S527-S530 ◽  
Author(s):  
In Jun Hwang ◽  
Duck Young Hwang ◽  
Yong Min Kim ◽  
Bongyoung Yoo ◽  
Dong Hyuk Shin

2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document