Influence of carrier mobility on sensitivity of room-temperature-operation CO2 sensor based on SnO2 thin film

2018 ◽  
Vol 57 (11) ◽  
pp. 115503 ◽  
Author(s):  
Ryo Tanuma ◽  
Hikaru Haga ◽  
Mutsumi Sugiyama
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Laureen Ida Ballesteros ◽  
Christopher Jude Vergar ◽  
Armando Somintac

2013 ◽  
Vol 668 ◽  
pp. 681-685
Author(s):  
Ya Xue ◽  
Hai Ping He ◽  
Zhi Zhen Ye

In this study, the authors have presented results for fabricated ZnO based FET and the UV-photoconductive characteristics of Na doped ZnMgO thin films. The electrical measurements confirmed that the conductivity of the Na doped ZnMgO thin film is p-type, and the carrier mobility was estimated to be 2.3 cm2V-1S-1. Moreover, after exposed to the 365 nm ultraviolet light, the Na doped ZnMgO thin films still exhibited p-type behavior under gate voltage ranging from -5 to 2 V, and the Id increased a little while the carrier mobility did not change much. The photocurrent was measured under a bias of 6 V in air at room temperature. The films performed a higher current intensity after the illumination. The instantaneous rise of the photocurrent was completed when exposed to the 365 nm ultraviolet for 20 s, after switching the ultraviolet off the photocurrent decayed in a slower rate. The enhance rate of photocurrent was about 1.33 %. Conclusively, Na is a considerable acceptor dopant for making high quality p-type ZnO films, and the tiny change in the photocurrent of p-type Na doped ZnMgO thin film made it relatively stable when fabricating LEDs and other optoelectronic devices.


2009 ◽  
Vol 9 (8) ◽  
pp. 4817-4819 ◽  
Author(s):  
H. B. Huo ◽  
C. Wang ◽  
F. D. Yan ◽  
H. Z. Ren ◽  
M. Y. Shen

2011 ◽  
Vol 1329 ◽  
Author(s):  
Z. Aabdin ◽  
M. Winkler ◽  
D. Bessas ◽  
J. König ◽  
N. Peranio ◽  
...  

ABSTRACTNano-alloyed p-type Sb2Te3 and n-type Bi2Te3 thin films were grown on SiO2/Si and BaF2 substrates by molecular beam epitaxy (MBE) in two steps: (i) Repeated deposition of five-layer stacks with sequence Te-X-Te-X-Te (X = Sb or Bi) with elemental layer thicknesses of 0.2 nm on substrates at room temperature, (ii) annealing at 250 °C for two hours at which phase formation of Sb2Te3 or Bi2Te3 occurred. The room temperature MBE deposition method reduces surface roughness, allows the use of non lattice-matched substrates, and yields a more accurate and easier control of the Te content compared to Bi2Te3 thin films, which were epitaxially grown on BaF2 substrates at 290 °C. X-ray diffraction revealed that the thin films were single phase, poly-crystalline, and textured. The films showed grain sizes of 500 nm for Sb2Te3 and 250 nm for Bi2Te3, analyzed by transmission electron microscopy (TEM). The in-plane transport properties (thermopower S, electrical conductivity σ, charge carrier density n, charge carrier mobility μ, power factor S2σ) were measured at room temperature. The nano-alloyed Sb2Te3 thin film revealed a remarkably high power factor of 29 μW cm-1 K-2 similar to epitaxially grown Bi2Te3 thin films and Sb2Te3 single crystalline bulk materials. This large power factor can be attributed to a high charge carrier mobility of 402 cm2 V−1 s-1 similar to high-ZT Bi2Te3/Sb2Te3 superlattices. However, for the nano-alloyed Bi2Te3 thin film a low power factor of 8 μW cm−1 K-2 and a low charge carrier mobility of 80 cm2 V−1 s−1 were found. Detailed microstructure and phase analyses were carried out by energy-filtered TEM in cross-sections. Quantitative chemical analysis by energy-dispersive x−ray spectroscopy (EDS) was also applied. In Bi2Te3 thin films, few nanometer thick Bi-rich blocking layers at grain boundaries and Te fluctuations by 1.3 at.% within the grains were observed. The small charge carrier densities are explained by a reduced antisite defect density due to the low temperatures to which the thin films were exposed during annealing.


2014 ◽  
Vol 71 ◽  
pp. 185-189 ◽  
Author(s):  
Mohamed Belaqziz ◽  
M’barek Amjoud ◽  
Abdelhadi Gaddari ◽  
Benaïssa Rhouta ◽  
Daoud Mezzane

Sign in / Sign up

Export Citation Format

Share Document