SEISMIC BEHAVIOUR OF BRIDGE STRUCTURES MADE OF NATURAL FIBRE REINFORCED POLYMER-CONCRETE COMPOSITE

Author(s):  
Jiaxin Chen ◽  
Nawawi Chouw
2015 ◽  
Vol 1120-1121 ◽  
pp. 1480-1484 ◽  
Author(s):  
Jia Xin Chen ◽  
Nawawi Chouw

This paper addresses the usage of new construction materials made of natural fibre reinforced polymer and concrete composite for future earthquake-resistant structures. The structure considered is a simple circular bridge pier. To evaluate the seismic performance of the structure shake table experiments were performed. To reveal the consequence of the magnitude of the ground excitation for the structure the effect of a gradual increase of the peak ground displacement is investigated. The results show that although external damage to the structure cannot be observed the bond between polymer and concrete is a significant factor that determines the performance of the structure.


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
H. F. M. de Queiroz ◽  
M. D. Banea ◽  
D. K. K. Cavalcanti

AbstractNatural fibre-reinforced composites have attracted a great deal of attention by the automotive industry mainly due to their sustainable characteristics and low cost. The use of sustainable composites is expected to continuously increase in this area as the cost and weight of vehicles could be partially reduced by replacing glass fibre composites and aluminium with natural fibre composites. Adhesive bonding is the preferred joining method for composites and is increasingly used in the automotive industry. However, the literature on natural fibre reinforced polymer composite adhesive joints is scarce and needs further investigation. The main objective of this study was to investigate experimentally adhesively bonded joints made of natural, synthetic and interlaminar hybrid fibre-reinforced polymer composites. The effect of the number of the interlaminar synthetic layers required in order to match the bonded joint efficiency of a fully synthetic GFRP bonded joint was studied. It was found that the failure load of the hybrid jute/glass adherend joints increased by increasing the number of external synthetic layers (i.e. the failure load of hybrid 3-layer joint increased by 28.6% compared to hybrid 2-layer joint) and reached the pure synthetic adherends joints efficiency due to the optimum compromise between the adherend material property (i.e. stiffness and strength) and a diminished bondline peel stress state.


2021 ◽  
pp. 152808372110575
Author(s):  
Adnan Amjad ◽  
Aslina Anjang Ab Rahman ◽  
Habib Awais ◽  
Mohd Shukur Zainol Abidin ◽  
Junaid Khan

Composite holds great promise for future materials considering its advantages such as excellent strength, stiffness, lightweight, and cost-effectiveness. Due to rising environmental concerns, the research speed gradually changes from synthetic polymer composites to natural fibre reinforced polymer composites (NFRPCs). Natural fibres are believed a valuable and robust replacement to synthetic silicates and carbon-based fibres, along with biodegradability, recyclability, low cost, and eco-friendliness. But the incompatibility between natural fibre and polymer matrices and higher moisture absorption percentage of natural fibre limitise their applications. To overcome these flaws, surface treatment of natural fibre and nanofiller addition have become some of the most important aspects to improve the performance of NFRPCs. This review article provides the most recent development on the effect of different nanofiller addition and surface treatment on the mechanical, thermal, and wetting behaviour of NFRPCs. It concludes that the fibre surface treatment and nanofillers in natural fibre polymer composites positively affect mechanical, thermal and water absorption properties. A systematic understanding in this field covers advanced research basics to stimulate investigation for fabricating NFRPCs with excellent performance.


Author(s):  
NurFadhlin Sakina Jamil ◽  
◽  
Mazatusziha Ahmad ◽  
Ahmad Hakiim Jamaluddin ◽  
◽  
...  

Biodegradable foam packaging was chosen as an alternative food packaging material due to non-toxic and produced from renewable sources. Researchers has turned to incorporate natural fibre to enhance the mechanical properties of polymer composite foam. In this study, the objective is to identify the studies which investigated on the tensile properties of natural fiber incorporated polymer composite foam and analyzed the effect of natural fibre content and size on tensile properties. Further correlation between the natural fibre content and size on tensile properties of composite polymer foam was conducted. The studies on the natural fibre incorporated polymer composite was identify via PRISMA method. The effect of natural fibre content and natural fibre size on tensile properties of polymer composite foam were analyzed in terms of qualitative analysis via systematic review. This study employs systematic review method on the existing literature. This study has utilized supplementary databases such as SAGE Journals, ScienceDirect, Taylor & Francis, Emerald Insight, ERIC ProQuest, SpringerLink and IEEE Xplore to cater all the possible relevant literature for a comprehensive review. The systematic review method comprised of the steps that explain on the review process in the sequence of the (identification, screening, eligibility), data analysis and data abstraction. From the article used in this systematic review, most of the result shown the increased tensile properties on natural fibre reinforced polymer composite foams. The study by Texteira et al. (2014) shows that the softwood fibre with 33% of PLA loading has the highest elongation at break, and highest natural fibre size (2470 µm). While the study by Long et al. (2019) has the highest tensile strength with 30% of ABF fibre content. The composition of 20 wt% BF with 80 wt% PLA composites were concluded to have the optimum tensile properties


Sign in / Sign up

Export Citation Format

Share Document