Effect of nano-fillers on low-velocity impact properties of synthetic and natural fibre reinforced polymer composites- a review

Author(s):  
Smaranika Nayak ◽  
Ramesh Kumar Nayak ◽  
Isham Panigrahi
2022 ◽  
pp. 002199832110652
Author(s):  
Rochele Pinto ◽  
Gediminas Monastyreckis ◽  
Hamza Mahmoud Aboelanin ◽  
Vladimir Spacek ◽  
Daiva Zeleniakiene

This article presents the possibility of strength improvement and energy absorption of carbon fibre reinforced polymer composites by matrix modification. In this study, the mechanical properties of bisphenol-A epoxy matrix and carbon fibre reinforced polymer composites were modified with four different wt.% of star-shaped polymer n-butyl methacrylate (P n-BMA) block glycidyl methacrylate (PGMA). The tensile strength of the epoxy with 1 wt.% star-shaped polymer showed 128% increase in comparison to unmodified epoxy samples. Two different wt.% were then used for the modification of carbon fibre-reinforced polymer composite samples. Tensile tests and low-velocity impact tests were conducted for characterising modified samples. Tensile test results performed showed a slight improvement in the tensile strength and modulus of the composite. Low-velocity impact tests showed that addition of 1 wt.% star-shaped polymer additives increase composite energy absorption by 53.85%, compared to pure epoxy composite specimens. Scanning electron microscopy (SEM) analysis of post-impact specimens displays fracture modes and bonding between the matrix and fibre in the composites. These results demonstrate the potential of a novel star-shaped polymer as an additive material for automotive composite parts, where energy absorption is significant.


2014 ◽  
Vol 1044-1045 ◽  
pp. 153-157 ◽  
Author(s):  
N. Razali ◽  
M.T.H. Sultan ◽  
Y. Aminanda

The aim of this work is to study the behaviour of two types of composite material when subjected to impacts at different energy levels under low velocity impact events. The composite material used in this study was Glass Fibre Reinforced Polymer (GFRP) which was C-type/600 g/m2 and E-type/600 g/m2. This material was fabricated to produce laminated plate specimens with a dimension of 100 mm 150 mm. Each specimen had 10 layers of GFRP woven roving plies. The low velocity impact test was performed using an IM10 Drop Weight Impact Tester with a 10 mm hemispherical striker cap. The impact energy was set to 14, 28, 42 and 56 joules with velocity ranging from 1.73 m/s to 3.52 m/s. The relationships of impact energy with impact force, displacement and energy absorbed are presented. The comparison and behaviour between the two types of GFRP are discussed.


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


Sign in / Sign up

Export Citation Format

Share Document