scholarly journals SEISMIC DESIGN OF STEEL FRAMES WITH FUSEIS BEAM LINK ENERGY DISSIPATION SYSTEMS

Author(s):  
Marius Pinkawa ◽  
Helen Bartsch ◽  
Simon Schaffrath ◽  
Benno Hoffmeister ◽  
Markus Feldmann
2011 ◽  
Vol 71-78 ◽  
pp. 3662-3665
Author(s):  
Bao Cheng Zhao ◽  
Qiang Gu

Eccentrically braced steel frames are a lateral load-resisting system which apply high intensity area and it can provide the high elastic stiffness that met higher steel building drift requirement. This paper first provides an introduction of Forces in links and Energy dissipation mechanisms of eccentrically braced steel frames. In that Eccentrically braced steel frames will collapse after the link beams go into plastic deformation under earthquake load, A new analytical model which include shell element apply to link beams with large deformation and plastic deformation and beams element apply to other parts of structure is presented in this paper for analyzing eccentrically braced steel frames energy-dissipation behavior and collapse mechanism. Computer program is complied. After this paper applies nonlinear finite element program to analyze the behaviors of eccentrically braced steel frames under cyclic load, the seismic design recommendations of eccentrically brace are presented.


2011 ◽  
Vol 243-249 ◽  
pp. 499-505
Author(s):  
Can Xing Qiu ◽  
He Tao Hou ◽  
Wei Long Liu ◽  
Ming Lei Wu

A model of full scale one-bay, one storey was tested under low cyclic loading in order to study the hysteretic behavior of steel frames with sandwich composite (SC) panels. According to the failure pattern and damage process of test specimen, seismic behaviors were evaluated. Hysterics loops, skeleton curves, curves of strength degradation, and curves of stiffness degradation, ductility index and viscous damping coefficient were analyzed. Test results show that the failures of panels mainly occurred around the embedded parts, but compared with traditional panels and walls, SC panels exhibit a better integration. The connection between panel and steel frame is vital to the mutual work of the two parts. Finally, seismic design recommendations based on the analysis of ductility index and energy dissipation of the structures are presented.


2019 ◽  
Vol 22 (16) ◽  
pp. 3420-3434 ◽  
Author(s):  
Gang Li ◽  
Li-Hua Zhu ◽  
Hong-Nan Li

Passive energy dissipation devices have been proved to be effective and low-cost means of structural control, and a variety of dampers have been developed over the past decades. Hysteretic dampers with hardening post-yielding stiffness have multiphased energy dissipation characteristics because of their hardening behavior, which can compensate for stiffness loss and postpone the collapse of damaged structures. In this article, a hysteretic model is proposed for hysteretic dampers with hardening post-yielding stiffnesses, and a formula is derived for equivalent yield strength expressed by the additional damping of the structure. A procedure is developed for displacement-based seismic design that transforms the relatively complex damping into an acceptable yield strength. A numerical example is only presented for demonstrating the design process and simply validating the proposed method. The results show that the proposed procedure is easy to implement and could produce adequate hysteretic dampers with hardening post-yielding stiffness hardening behavior. The maximum displacement responses of the existing structure retrofitted using the proposed procedure satisfy the expected performance objective well. Thus, this procedure could be an alternative to seismic retrofitting for structures with energy dissipation systems.


2020 ◽  
Vol 18 (5) ◽  
pp. 2411-2430
Author(s):  
Long-He Xu ◽  
Yu-Sheng Sun ◽  
Xiao-Wei Fan ◽  
Zhong-Xian Li

Sign in / Sign up

Export Citation Format

Share Document