scholarly journals LOW-COST BASE ISOLATION SYSTEMS FOR UNREINFORCED MASONRY BUILDINGS IN DEVELOPING COUNTRIES

2021 ◽  
Author(s):  
Nagavinothini Ravichandran ◽  
Daniele Losanno ◽  
Fulvio Parisi
2021 ◽  
Vol 141 ◽  
pp. 106501
Author(s):  
Daniele Losanno ◽  
Nagavinothini Ravichandran ◽  
Fulvio Parisi ◽  
Andrea Calabrese ◽  
Giorgio Serino

2012 ◽  
Vol 19 (6) ◽  
pp. 1327-1339 ◽  
Author(s):  
Radhikesh P. Nanda ◽  
Pankaj Agarwal ◽  
Manish Shrikhande

A feasibility study of friction base isolation system for seismic protection has been performed. Four different sliding interfaces, namely, green marble/High Density Poly Ethylene (HDPE), green marble/green marble, green marble/geosynthetic, and green marble/ rubber layers have been studied through experimental and analytical investigations. The experimental investigations show that the coefficient of friction values of these interfaces lies in the desirable range for seismic protection, i.e., 0.05 to 0.15. The analytical investigation reveals that most of these sliding interfaces are effective in reducing spectral accelerations up to 50% and the sliding displacement is restricted within plinth projection of 75 mm (3 in). Green marble and geosynthetic are found to be better alternatives for use in friction isolation system with equal effectiveness of energy dissipation and limiting the earthquake energy transmission to super structure during strong earthquake leading to a low cost, durable solution for earthquake protection of masonry buildings.


2022 ◽  
Vol 154 ◽  
pp. 107127
Author(s):  
Amir Ali ◽  
Chunwei Zhang ◽  
Tayyaba Bibi ◽  
Limeng Zhu ◽  
Liyuan Cao ◽  
...  

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


1982 ◽  
Vol 14 (9-11) ◽  
pp. 1337-1352 ◽  
Author(s):  
G G Cillié

An estimated 80 % of all illnesses in developing countries is in one way or another related to water. In order to alleviate this most serious condition, the united Nations has initiated the “International Water Decade”, for which the estimated costs are $600 000 million, a sum which is far beyond any available means. By application of “low-cost technology” this sum could be reduced to $100 000 million which brings the objective within the reach of possibility. Details are given of the design and methods of construction of units which are best suited to the specific requirements and which would be simple, reliable and economical to operate. These can be constructed largely from local materials and by local labour. The need for appropriate training of both operators and the user population is stressed.


2021 ◽  
Vol 146 ◽  
pp. 106675
Author(s):  
Anastasios Tsiavos ◽  
Anastasios Sextos ◽  
Andreas Stavridis ◽  
Matt Dietz ◽  
Luiza Dihoru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document