scholarly journals OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals

2021 ◽  
Vol 7 ◽  
pp. e375
Author(s):  
Shiu Kumar ◽  
Ronesh Sharma ◽  
Alok Sharma

A human–computer interaction (HCI) system can be used to detect different categories of the brain wave signals that can be beneficial for neurorehabilitation, seizure detection and sleep stage classification. Research on developing HCI systems using brain wave signals has progressed a lot over the years. However, real-time implementation, computational complexity and accuracy are still a concern. In this work, we address the problem of selecting the appropriate filtering frequency band while also achieving a good system performance by proposing a frequency-based approach using long short-term memory network (LSTM) for recognizing different brain wave signals. Adaptive filtering using genetic algorithm is incorporated for a hybrid system utilizing common spatial pattern and LSTM network. The proposed method (OPTICAL+) achieved an overall average classification error rate of 30.41% and a kappa coefficient value of 0.398, outperforming the state-of-the-art methods. The proposed OPTICAL+ predictor can be used to develop improved HCI systems that will aid in neurorehabilitation and may also be beneficial for sleep stage classification and seizure detection.






2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mustafa Radha ◽  
Pedro Fonseca ◽  
Arnaud Moreau ◽  
Marco Ross ◽  
Andreas Cerny ◽  
...  

Abstract Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account long-term sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution to model long-term cardiac sleep architecture information and validated on a comprehensive data set (292 participants, 584 nights, 541.214 annotated 30 s sleep segments) comprising a wide range of ages and pathological profiles, annotated according to the Rechtschaffen and Kales (R&K) annotation standard. It is shown that the model outperforms state-of-the-art approaches which were often limited to non-temporal or short-term recurrent classifiers. The model achieves a Cohen’s k of 0.61 ± 0.15 and accuracy of 77.00 ± 8.90% across the entire database. Further analysis revealed that the performance for individuals aged 50 years and older may decline. These results demonstrate the merit of deep temporal modelling using a diverse data set and advance the state-of-the-art for HRV-based sleep stage classification. Further research is warranted into individuals over the age of 50 as performance tends to worsen in this sub-population.



1997 ◽  
Vol 36 (04/05) ◽  
pp. 41-46
Author(s):  
A. Kjaer ◽  
W. Jensen ◽  
T. Dyrby ◽  
L. Andreasen ◽  
J. Andersen ◽  
...  

Abstract.A new method for sleep-stage classification using a causal probabilistic network as automatic classifier has been implemented and validated. The system uses features from the primary sleep signals from the brain (EEG) and the eyes (AOG) as input. From the EEG, features are derived containing spectral information which is used to classify power in the classical spectral bands, sleep spindles and K-complexes. From AOG, information on rapid eye movements is derived. Features are extracted every 2 seconds. The CPN-based sleep classifier was implemented using the HUGIN system, an application tool to handle causal probabilistic networks. The results obtained using different training approaches show agreements ranging from 68.7 to 70.7% between the system and the two experts when a pooled agreement is computed over the six subjects. As a comparison, the interrater agreement between the two experts was found to be 71.4%, measured also over the six subjects.



2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.



2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarun Paisarnsrisomsuk ◽  
Carolina Ruiz ◽  
Sergio A. Alvarez

AbstractDeep neural networks can provide accurate automated classification of human sleep signals into sleep stages that enables more effective diagnosis and treatment of sleep disorders. We develop a deep convolutional neural network (CNN) that attains state-of-the-art sleep stage classification performance on input data consisting of human sleep EEG and EOG signals. Nested cross-validation is used for optimal model selection and reliable estimation of out-of-sample classification performance. The resulting network attains a classification accuracy of $$84.50 \pm 0.13\%$$ 84.50 ± 0.13 % ; its performance exceeds human expert inter-scorer agreement, even on single-channel EEG input data, therefore providing more objective and consistent labeling than human experts demonstrate as a group. We focus on analyzing the learned internal data representations of our network, with the aim of understanding the development of class differentiation ability across the layers of processing units, as a function of layer depth. We approach this problem visually, using t-Stochastic Neighbor Embedding (t-SNE), and propose a pooling variant of Centered Kernel Alignment (CKA) that provides an objective quantitative measure of the development of sleep stage specialization and differentiation with layer depth. The results reveal a monotonic progression of both of these sleep stage modeling abilities as layer depth increases.



Sign in / Sign up

Export Citation Format

Share Document