scholarly journals Equilibrial service composition model in Cloud manufacturing (ESCM) based on non-cooperative and cooperative game theory for healthcare service equipping

2021 ◽  
Vol 7 ◽  
pp. e410
Author(s):  
Ehsan Vaziri Goudarzi ◽  
Mahmoud Houshmand ◽  
Omid Fatahi Valilai ◽  
Vahidreza Ghezavati ◽  
Shahrooz Bamdad

Industry 4.0 is the digitalization of the manufacturing systems based on Information and Communication Technologies (ICT) for developing a manufacturing system to gain efficiency and improve productivity. Cloud Manufacturing (CM) is a paradigm of Industry 4.0. Cloud Manufacturing System (CMS) considers anything as a service. The end product is developed based on the service composition in the CMS according to consumers’ needs. Also, composite services are developed based on the interaction of MCS providers from different geographical locations. Therefore, the appropriate Manufacturing Cloud Service (MCS) composition is an important problem based on the real-world conditions in CMS. The game theory studies the mathematical model development based on interactions between MCS providers according to real-world conditions. This research develops an Equilibrial Service Composition Model in Cloud Manufacturing (ESCM) based on game theory. MCS providers and consumers get benefits mutually based on ESCM. MCS providers are players in the game. The payoff function is developed based on a profit function. Also, the game strategies are the levels of Quality of Service (QoS) based on consumers’ needs in ESCM. Firstly, the article develops a composite service based on a non-cooperative game. The Nash equilibrium point demonstrates the QoS value of composite service and the payoff value for the players. Secondly, the article develops a composite service based on a cooperative game. The players participate in coalitions to develop the composite service based on formal cooperation. The grand coalition demonstrates the QoS value of composite service and the payoff value for the players in the cooperative game. The research has compared the games’ results. The players’ payoff and the QoS value are better in the cooperative game than in the non-cooperative game. Therefore, the MCS providers and consumers are satisfied mutually in the cooperative game based on ESCM. Finally, the article has applied ESCM in a Healthcare Service to equip 24 hospitals in the best time.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Li-Nan Zhu ◽  
Peng-Hang Li ◽  
Xiao-Long Zhou

Cloud manufacturing (CMfg) is a new service-oriented smart manufacturing paradigm, and it provides a new product development model in which users are enabled to configure, select, and utilize customized manufacturing service on-demand. Because of the massive manufacturing resources, various users with individualized demands, heterogeneous manufacturing system or platform, and different data type or file type, CMfg is fully recognized as a kind of complex manufacturing system in complex environment and has received considerable attention in recent years. In practical scenarios of CMfg, the amount of manufacturing task may be very large, and there are always quite a lot of candidate manufacturing services in cloud pool for corresponding subtasks. These candidate services will be selected and composed together to complete a complex manufacturing task. Obviously, manufacturing service composition plays a very important role in CMfg lifecycle and thus enables complex manufacturing system to be stable, safe, reliable, and efficient and effective. In this paper, a new manufacturing service composition scheme named as Multi-Batch Subtasks Parallel-Hybrid Execution Cloud Service Composition for Cloud Manufacturing (MBSPHE-CSCCM) is proposed, and such composition is one of the most difficult combination optimization problems with NP-hard complexity. To address the problem, a novel optimization method named as Improved Hybrid Differential Evolution and Teaching Based Optimization (IHDETBO) is proposed and introduced in detail. The results obtained by simulation experiments and case study validate the effectiveness and feasibility of the proposed algorithm.


2021 ◽  
Vol 7 ◽  
pp. e743
Author(s):  
Seyyed-Alireza Radmanesh ◽  
Alireza Haji ◽  
Omid Fatahi Valilai

Cloud manufacturing is a new globalized manufacturing framework which has improved the performance of manufacturing systems. The service-oriented architecture as the main idea behind this framework means that all resources and capabilities are considered as services. The agents interact by way of service exchanging, which has been a part of service composition research topics. Service allocations to demanders in a cloud manufacturing system have a dynamic behavior. However, the current research studies on cloud-based service composition are mainly based on centralized global optimization models. Therefore, a distributed deployment and real-time synchronization platform, which enables the globalized collaboration in service composition, is required. This paper proposes a method of using blockchain to solve these issues. Each service composition is considered as a transaction in the blockchain concept. A block includes a set of service compositions and its validity is confirmed by a predefined consensus mechanism. In the suggested platform, the mining role in blockchain is interpreted as an endeavor for proposing the proper service composition in the manufacturing paradigm. The proposed platform has interesting capabilities as it can increase the response time using the blockchain technology and improve the overall optimality of supply-demand matching in cloud manufacturing. The efficiency of the proposed model was evaluated by investigating a service allocation problem in a cloud manufacturing system in four large scale problems. Each problem is examined in four centralized modes, two, three and four solvers in blockchain-based model. The simulation results indicate the high quality of the proposed solution. The proposed solution will lead to at least 15.14% and a maximum of 34.8 percent reduction in costs and 20 to 68.4 percent at the solving time of the problem. It is also observed that with increasing the number of solvers (especially in problems with larger dimensions) the solution speed increases sharply (more than 68% improvement in some problems), which indicates the positive effect of distribution on reducing the problem-solving time.


Sign in / Sign up

Export Citation Format

Share Document