scholarly journals Clone-advisor: recommending code tokens and clone methods with deep learning and information retrieval

2021 ◽  
Vol 7 ◽  
pp. e737
Author(s):  
Muhammad Hammad ◽  
Önder Babur ◽  
Hamid Abdul Basit ◽  
Mark van den Brand

Software developers frequently reuse source code from repositories as it saves development time and effort. Code clones (similar code fragments) accumulated in these repositories represent often repeated functionalities and are candidates for reuse in an exploratory or rapid development. To facilitate code clone reuse, we previously presented DeepClone, a novel deep learning approach for modeling code clones along with non-cloned code to predict the next set of tokens (possibly a complete clone method body) based on the code written so far. The probabilistic nature of language modeling, however, can lead to code output with minor syntax or logic errors. To resolve this, we propose a novel approach called Clone-Advisor. We apply an information retrieval technique on top of DeepClone output to recommend real clone methods closely matching the predicted clone method, thus improving the original output by DeepClone. In this paper we have discussed and refined our previous work on DeepClone in much more detail. Moreover, we have quantitatively evaluated the performance and effectiveness of Clone-Advisor in clone method recommendation.

2014 ◽  
Vol 3 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Naresh Babu Bynagari

This article seeks to foray into the nitty-gritty of integrated reasoning for code clone detection and how it is effectively carried out, given the amount of analytics usually associated with such activities. Detection of codes requires high-pitch familiarity with cloning systems and their workings. Hence, discovering similar code segments that are often regarded and seen as code imitations (clone) is not an easy responsibility. More especially, this very detection process might possess key purposes in the context of susceptibility findings, refactoring, and imitation detecting. Through the voyage of discovery this article intends to expose you to, you will realize that identical code segments, more often than not described as code clones, appear to be a serious duty, especially for large code bases <1; 2; 3; 4>. There are certain approaches and deep technicalities that this sort of detection is known for. Still, from the avalanche of resources that formed the bedrock of this article, one would discover the easiest formula to adopt in maneuvering such strenuous issues.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


2021 ◽  
Vol 11 (9) ◽  
pp. 4248
Author(s):  
Hong Hai Hoang ◽  
Bao Long Tran

With the rapid development of cameras and deep learning technologies, computer vision tasks such as object detection, object segmentation and object tracking are being widely applied in many fields of life. For robot grasping tasks, object segmentation aims to classify and localize objects, which helps robots to be able to pick objects accurately. The state-of-the-art instance segmentation network framework, Mask Region-Convolution Neural Network (Mask R-CNN), does not always perform an excellent accurate segmentation at the edge or border of objects. The approach using 3D camera, however, is able to extract the entire (foreground) objects easily but can be difficult or require a large amount of computation effort to classify it. We propose a novel approach, in which we combine Mask R-CNN with 3D algorithms by adding a 3D process branch for instance segmentation. Both outcomes of two branches are contemporaneously used to classify the pixels at the edge objects by dealing with the spatial relationship between edge region and mask region. We analyze the effectiveness of the method by testing with harsh cases of object positions, for example, objects are closed, overlapped or obscured by each other to focus on edge and border segmentation. Our proposed method is about 4 to 7% higher and more stable in IoU (intersection of union). This leads to a reach of 46% of mAP (mean Average Precision), which is a higher accuracy than its counterpart. The feasibility experiment shows that our method could be a remarkable promoting for the research of the grasping robot.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 261
Author(s):  
Tianyang Liu ◽  
Zunkai Huang ◽  
Li Tian ◽  
Yongxin Zhu ◽  
Hui Wang ◽  
...  

The rapid development in wind power comes with new technical challenges. Reliable and accurate wind power forecast is of considerable significance to the electricity system’s daily dispatching and production. Traditional forecast methods usually utilize wind speed and turbine parameters as the model inputs. However, they are not sufficient to account for complex weather variability and the various wind turbine features in the real world. Inspired by the excellent performance of convolutional neural networks (CNN) in computer vision, we propose a novel approach to predicting short-term wind power by converting time series into images and exploit a CNN to analyze them. In our approach, we first propose two transformation methods to map wind speed and precipitation data time series into image matrices. After integrating multi-dimensional information and extracting features, we design a novel CNN framework to forecast 24-h wind turbine power. Our method is implemented on the Keras deep learning platform and tested on 10 sets of 3-year wind turbine data from Hangzhou, China. The superior performance of the proposed method is demonstrated through comparisons using state-of-the-art techniques in wind turbine power forecasting.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2834
Author(s):  
Billur Kazaz ◽  
Subhadipto Poddar ◽  
Saeed Arabi ◽  
Michael A. Perez ◽  
Anuj Sharma ◽  
...  

Construction activities typically create large amounts of ground disturbance, which can lead to increased rates of soil erosion. Construction stormwater practices are used on active jobsites to protect downstream waterbodies from offsite sediment transport. Federal and state regulations require routine pollution prevention inspections to ensure that temporary stormwater practices are in place and performing as intended. This study addresses the existing challenges and limitations in the construction stormwater inspections and presents a unique approach for performing unmanned aerial system (UAS)-based inspections. Deep learning-based object detection principles were applied to identify and locate practices installed on active construction sites. The system integrates a post-processing stage by clustering results. The developed framework consists of data preparation with aerial inspections, model training, validation of the model, and testing for accuracy. The developed model was created from 800 aerial images and was used to detect four different types of construction stormwater practices at 100% accuracy on the Mean Average Precision (MAP) with minimal false positive detections. Results indicate that object detection could be implemented on UAS-acquired imagery as a novel approach to construction stormwater inspections and provide accurate results for site plan comparisons by rapidly detecting the quantity and location of field-installed stormwater practices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlo Donadio ◽  
Massimo Brescia ◽  
Alessia Riccardo ◽  
Giuseppe Angora ◽  
Michele Delli Veneri ◽  
...  

AbstractSeveral approaches were proposed to describe the geomorphology of drainage networks and the abiotic/biotic factors determining their morphology. There is an intrinsic complexity of the explicit qualification of the morphological variations in response to various types of control factors and the difficulty of expressing the cause-effect links. Traditional methods of drainage network classification are based on the manual extraction of key characteristics, then applied as pattern recognition schemes. These approaches, however, have low predictive and uniform ability. We present a different approach, based on the data-driven supervised learning by images, extended also to extraterrestrial cases. With deep learning models, the extraction and classification phase is integrated within a more objective, analytical, and automatic framework. Despite the initial difficulties, due to the small number of training images available, and the similarity between the different shapes of the drainage samples, we obtained successful results, concluding that deep learning is a valid way for data exploration in geomorphology and related fields.


Author(s):  
J. Rastegar ◽  
Y. Qin ◽  
Q. Tu

Abstract A novel approach to optimal robot manipulator motion planning for Solid Freeform Fabrication (SFF) by thermal spraying is presented. In this approach, given the desired spatial geometry of the object, the motion of the spray gun relative to a forming platform is synthesized for minimal masking requirements considering the probabilistic nature of the thermal spraying process. The material build-up rate can be planned to achieve the desired distribution of the physical/material properties within the object volume. Examples of optimal motion planning for the generation of some basic solid objects and computer simulation of the effectiveness of the developed methodology are presented.


Sign in / Sign up

Export Citation Format

Share Document