scholarly journals Habitat connectivity and resource selection in an expanding bobcat (Lynx rufus) population

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12460
Author(s):  
Viorel D. Popescu ◽  
Madeline Kenyon ◽  
Ryan K. Brown ◽  
Marissa A. Dyck ◽  
Suzanne Prange ◽  
...  

Terrestrial carnivores are among the most imperiled species worldwide, yet some species are resilient and are recovering in human-dominated landscapes after decades or centuries of absence. Bobcat (Lynx rufus) populations were extirpated from much of Midwestern US in the mid-1800’s, and are currently expanding and recolonizing their former range. In this study, we investigated multi-scale habitat selection for Ohio’s expanding bobcat population, and examined habitat connectivity in order to evaluate the conduits for dispersal statewide. We used citizen observations collected between 1978 and 2019 and logistic regression to evaluate population-level habitat selection, and GPS telemetry data for 20 individuals collected between 2012 and 2014 and a distribution-weighted exponential Resource Selection Function to evaluate individual-level habitat selection within home ranges. At the population level, bobcats selected for higher amounts of forest and pasture (at a 50 km2 scale) and herbaceous vegetation (at 15–50 50 km2 scales), thus overall heterogeneous forested habitat. At individual (home range) level, bobcats selected for forested habitats with low road density and farther away from high traffic roads; they also showed weak selection for open habitat at the home range level. Male home ranges were significantly greater than female home ranges. Lastly, we used the population-level spatial outputs (i.e. habitat suitability map) to parameterize habitat connectivity models using circuit theory in the program Circuitscape. We tested three relationships between habitat suitability and resistance to movement and used a subset of data on potential dispersing individuals to evaluate which relationship performed best. All three relationships performed almost equally well, and we calculated a weighted averaged connectivity map as our final map. Habitat was highly permeable to movements between core areas of two genetically distinct subpopulations located in southeastern Ohio. We also identified potential dispersal corridors from the core areas to other regions of Ohio dominated by agriculture and suburban development via forested riparian corridors. Overall, our analysis offers new information on habitat selection and connectivity in a rebounding felid population and offers important ecological information for wildlife management strategies. We recommend that the suitability and connectivity models should be periodically updated until the population reaches an equilibrium, and be integrated with data from neighboring states for a comprehensive assessment of a conservation success story.

Author(s):  
Katherine Gura ◽  
Bryan Bedrosian ◽  
Anna D. Chalfoun ◽  
Susan Patla

Identifying resource requirements of under-studied species during key stages such as breeding is critical for effective management. We quantified breeding-season home-range attributes and habitat selection of adult Great Gray Owls across multiple spatial (home-range and within-home-range level) and temporal (nesting and post-fledging; day versus night) scales in western Wyoming, USA. In 2018 and 2019 we outfitted adult male owls (n = 18) with GPS remote-download transmitters and collected hourly location data throughout the breeding season (1 May – 15 September). Using 50% and 95% kernel density estimates (KDE), mean core area was 1.2 km2 and mean home-range size was 6.2 km2 (n = 16). Resource selection analyses incorporated both remotely-sensed and microsite data. We conducted microsite surveys at used and available points within 95% KDE home ranges using a stratified random sample design (n = 661). Determining home-range and breeding habitat requirements will improve density estimates and facilitate the effective management of Great Gray Owls and their habitat. We found differing patterns between habitat selection at the home-range and within-home-range scales.   Featured photo by YNP on Flickr. https://flic.kr/p/SA17KT


2020 ◽  
Author(s):  
Anagaw Atickem ◽  
Matthias Klapproth ◽  
Martha Fischer ◽  
Dietmar Zinner ◽  
Leif Egil Loe

Abstract Background: Human settlement and agricultural activities restrict increasingly the range of large mammals in many cases contributing to declining numbers of ungulates. Here, we studied home range size and habitat selection of female mountain nyalas in the northern end of the Bale Mountains National Park (BMNP) (31 km2) surrounded by human settlement. We collected data on space use of seven adult female mountain nyalas equipped with Global Positioning System (GPS) collars. Home range size was estimated using fixed kernel density and habitat selection was determined by resource selection functions.Results: We found that female mountain nyalas have much smaller (5.7 km2) home ranges than the 19 km2 home range size predicted for a 170 kg, group-living species living in mixed habitats. Home ranges were 30% larger in night time than daytime. We suggest that the night time extension beyond the park boundaries were caused by both push and pull effects. The presumably high livestock and other ungulates grazing pressure within the protected area may cause forage-driven excursions out of the park, in particular during agricultural crop seasons. In addition, mountain nyalas are probably attracted by humans as shields against hyena predation. Resource selection index indicates bush land and forest habitat are the most preferred habitat types while agriculture and human settlements are least preferred habitats.Conclusions: Given that mountain nyalas are found in high density (24 individuals/km2) and the size of the northern part of the Bale Mountain National Park, which is currently under protection by the park authorities for the mountain nyala conservation, is too small for the predicted home range size of large ungulates, we suggest protecting additional area may be needed for the long-term conservation of the endangered mountain nyala.


2021 ◽  
Author(s):  
Levi Newediuk ◽  
Christina M. Prokopenko ◽  
Eric Vander Wal

Abstract Context Conserving and managing habitat for animals requires robust models to predict their space use. The functional response in habitat selection posits that animals adjust their habitat selection according to availability. Objectives Habitat availability can change over short time periods and small spatial distances, and thus failing to account for changes in habitat availability while modelling may not produce reliable predictions in the near–term or future. However, because individuals may respond to habitat availability differently, the functional response is also limited for predicting habitat selection by individuals. Methods Using a functional response in elk (Cervus canadensis) selection for mixed forest in response to road proximity, we compared habitat selection predictions made by population-level resource selection functions (RSFs) with random effects to incorporate individual differences in selection, to generalized functional response (GFR) RSFs. Results We found that since not all individuals followed the road-dependent functional response, the random effects model both predicted the distributions of individuals more accurately (R2 = 0.62 vs. R2 = 0.51) and produced coefficient estimates that matched their selection for mixed forest and distance from roads better than the GFR model (RMSE = 0.25 vs. RMSE = 0.29 and 0.37 vs. 0.46). Conclusions Individual habitat selection often varies within populations, and revealing those differences shows how individuals help populations respond to environmental change. We suggest that evaluating individual differences using multiple predictive approaches is necessary to forecast long–term habitat selection.


2021 ◽  
Author(s):  
Christen Herbert Fleming ◽  
Iman Deznabi ◽  
Shauhin Alavi ◽  
Margaret C. Crofoot ◽  
Ben T. Hirsch ◽  
...  

· Home-range estimates are a common product of animal tracking data, as each range informs on the area needed by a given individual. Population-level inference on home-range areas—where multiple individual home-ranges are considered to be sampled from a population—is also important to evaluate changes over time, space, or covariates, such as habitat quality or fragmentation, and for comparative analyses of species averages. Population-level home-range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population-level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home-range estimate, which are often large and heterogeneous. · Here, we introduce a statistically and computationally efficient framework for the population-level analysis of home-range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. · We apply our method to empirical examples on lowland tapir (Tapirus terrestris), kinkajou (Potos flavus), white‐nosed coati (Nasua narica), white-faced capuchin monkey (Cebus capucinus), and spider monkey (Ateles geoffroyi), and quantify differences between species, environments, and sexes. · Our approach allows researchers to more accurately compare different populations with different movement behaviors or sampling schedules, while retaining statistical precision and power when individual home-range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.


<em>Abstract</em>.—Space use and habitat selection of early juvenile Atlantic sturgeon <em>Acipenser oxyrinchus</em> have been little studied and remain largely unknown throughout the species’ range. In 2000–2002, survey trawling, ultrasonic telemetry, benthos sampling, and hydrodynamic modeling were used to determine the summer movement patterns, home range size, and habitat use and selection of early juvenile Atlantic sturgeon in the St. Lawrence estuary. Sonic-tagged Atlantic sturgeon, assumed to be age 2 based on their size, used a global area estimated at 76 km2 that included two main core areas. Individual summer home range sizes varied from 1 to 8 km2, but core areas were generally smaller than 1 km2. The mean daily distance traveled ranged from 0.4 to 13.5 km/d and was significantly related to sturgeon size. Fish were located mostly in freshwater relatively close to the salt wedge boundary and far from the shore, intertidal zones, and islands. They mostly used the 6–10-m depth range relatively close to a channel, in areas with low bottom current velocities, and over silt–clay substrates. Salinity and distance from the salt wedge were the two most important variables explaining their habitat selection. Age-0 Atlantic sturgeon used similar depth ranges, bottom salinities, and current velocities, but occupied mainly sandy substrate. Management implications of these results are discussed in relation to the impact of dredging and sediment disposal operations in the St. Lawrence estuary.


1994 ◽  
Vol 21 (1) ◽  
pp. 65 ◽  
Author(s):  
A Horsup

The home range and movements of the allied rock wallaby, Petrogale assimilis, a small macropod of the seasonally wet-dry tropics of Queensland, were studied over a 22-month period. There was no significant difference in the size of home ranges (95% isopleth) or core areas (65% isopleth) of males and females. Home ranges were generally elliptical with a mean size of 11.9 ha. Season had a major effect on home ranges. The following measures were all significantly greater in the dry seasons than in the wet seasons: home-range size (larger), home-range shape (more elongate), distance moved by females when feeding (longer), distance between shelter site and home-range centre of activity (longer). Feeding movements of males did not vary seasonally and were as long as dry-season movements of females, suggesting that movements of males are primarily determined by behavioural rather than physiological considerations. The overlap of rock-wallaby home ranges varied little between the sexes or seasons and averaged 38%. Core areas overlapped by an average of 22%; however, feeding adult rock-wallabies rarely met other conspecifics, except their partners. A comparison of the fixes of unpaired wallabies that had overlapping home ranges showed that temporal separation was occurring. In contrast, the home ranges of consort pairs showed extremely high temporal and spatial overlap. Rock-wallabies exhibited strong fidelity to their home ranges. The overlap of the seasonal home ranges and core areas of each individual rock wallaby averaged 68% and 52%, respectively. However, the seasonal home range of a socially immature adult male altered in location and size as he matured socially until it stabilised when he obtained a permanent consort.


2009 ◽  
Vol 87 (11) ◽  
pp. 1052-1060 ◽  
Author(s):  
Adam W. Ferguson ◽  
Nathan A. Currit ◽  
Floyd W. Weckerly

For solitary carnivores a polygynous mating system should lead to predictable patterns in space-use dynamics. Females should be most influenced by resource distribution and abundance, whereas polygynous males should be strongly influenced by female spatial dynamics. We gathered mean annual home-range-size estimates for male and female bobcats ( Lynx rufus (Schreber, 1777)) from previous studies to address variation in home-range size for this solitary, polygynous carnivore that ranges over much of North America. Mean annual home ranges for bobcats (171 males, 214 females) from 29 populations covering the entire north to south and east to west range demonstrated female home-range sizes varied more than an order of magnitude and that, on average, males maintained home ranges 1.65 times the size of females. Male home-range sizes scaled isometrically with female home-range sizes indicating that male bobcats increase their home-range size proportional to female home-range size. Using partial correlation analysis we also detected an inverse relationship between environmental productivity, estimated using the normalized difference vegetation index, and home-range size for females but not males. This study provides one of the few empirical assessments of how polygyny influences home-range dynamics for a wide-ranging carnivore.


2020 ◽  
Vol 47 (1) ◽  
pp. 77
Author(s):  
I. Suzanne Prange ◽  
Christa Rose

Abstract ContextBobcats (Lynx rufus) were extirpated from Ohio, USA, during the mid-1800s. Genetic evidence indicates that they recolonised from neighbouring states. Initial re-establishment occurred almost simultaneously in two spatially distinct areas of a coal-mined landscape in the 1980s. Relative population growth was apparently higher in the eastern than in the southern area. AimsUnderstanding the reasons for the disparity in population dynamics and sustainability is essential for proper bobcat management. It also addresses substantial knowledge gaps in vertebrate carnivore ecology on mined land. We hypothesised that the characteristics of mined land in the eastern Ohio area provided bobcats with greater resources, enabling a more rapid recovery. MethodsWe trapped bobcats and took body measurements and weights to determine condition indices. We attached GPS radio-collars and used locations to determine annual home-range and core-area sizes, home-range and core-area overlap, and habitat selection using remotely sensed land cover data and mine permit records. We compared factors between the two bobcat population areas. Key resultsBody condition indices were higher, and home ranges and core areas of males and females were smaller, for eastern Ohio bobcats. Home-range overlap did not differ for any dyad type. Selection of mined land by habitat type differed at the home-range level, with eastern bobcats selecting more mined habitats and southern bobcats showing an opposite tendency. ConclusionsAn interaction may exist between landscape features of former surface mines and bobcat recovery. Results suggest more favourable habitat conditions in the eastern area, which featured more mined land and more older, less regulated mines, than in the southern area. These conditions may support a higher bobcat reproductive success. ImplicationsThe first bobcat harvest season in Ohio is under development by authorities. We recommend the regulation of eastern and southern Ohio as separate bobcat management units; the southern population should remain protected, and the eastern population should be managed conservatively as a source population to further colonise southern Ohio. Our data suggest that surface-mined land can be conducive to the restoration and conservation of species.


The Condor ◽  
2007 ◽  
Vol 109 (4) ◽  
pp. 795-807 ◽  
Author(s):  
James R. Tietz ◽  
Matthew D. Johnson

Abstract We investigated selection of stopover habitat by juvenile Swainson's Thrushes (Catharus ustulatus) during fall migration at a site along the northern California coast. The study site vegetation consisted mainly of coniferous forest (pine [Pinus] and spruce [Picea]), with interspersed patches of broadleaf forest (willow [Salix] and alder [Alnus]) in poorly drained swales. For 26 birds captured and radio-tracked in 2002 and 2003, the average minimum stopover duration was 8.9 ± 1.0 days. For 20 of these birds with a sufficient number of locations, the average home range size was 1.9 ± 0.3 ha. Thrushes showed no overall pattern of selection for forest type within the study area or for forest type used inside their home range. Fat and lean birds selected forest types similarly within the study area and their home ranges. However, locations occupied by lean birds had twice as much huckleberry (Vaccinium ovatum) shrub cover and were 1.3 times more concealed by vegetation than locations occupied by fat birds. There were 2.5 times more huckleberries at occupied than random locations, and locations occupied by lean birds had 2.1 times more berries overall than those frequented by fat birds. Fecal analyses confirmed that huckleberries were a commonly consumed food (70% of sampled thrushes), but also revealed that thrushes ate arthropods (87%) and wax myrtle (Myrica californica) bracteoles (43%). The overall lack of forest type selection coupled with differences between fat and lean birds in selection for cover and fruit abundance suggests that fat level may influence microsite selection.


2016 ◽  
Vol 38 (2) ◽  
pp. 158 ◽  
Author(s):  
Stephen Phillips

The effects of short-term disturbances that result in changes to movement patterns and/or behaviour of wildlife are poorly understood. In this study the movements of seven koalas were monitored before, during and after a five-day music festival. During the monitoring program koalas occupied home-range areas of 0.6–13 ha with one or more core areas of activity. Aversive behaviour in the form of evacuation of known ranging areas was demonstrated by three koalas that had core areas within 525 m of the approximate centre of the festival area, the associated responses comprising movements that were perpendicular to and away from staging areas where music was played. Responses contained within known ranging areas were observed in three other koalas whose core areas were located up to 600 m away. The type of response appeared related to the proximity of koala home ranges to music-staging areas, while the maximum distance associated with an aversive response was 725 m. Six of the radio-tracked koalas returned to their home-range areas following the conclusion of festival activities. While the specific stimulus eliciting aversive behaviour was not identified, responses in all instances were initiated during the musical phase of the festival event. The potential for short-term disturbances such as music festivals to significantly influence the ranging patterns of koalas warrants recognition of possible longer-term ecological consequences for planning and management purposes.


Sign in / Sign up

Export Citation Format

Share Document