scholarly journals Evolution ofPhilodendron(Araceae) species in Neotropical biomes

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1744 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G. Schrago

Philodendronis the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies ofPhilodendronwere conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely-related genus,Homalomena, within thePhilodendronclade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history ofPhilodendronevolution along the Amazonian and Atlantic rainforests as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68Philodendronspecies, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale ofPhilodendronandHomalomenalineage diversification. Our estimates indicate that AmericanHomalomenais the sister clade toPhilodendron. The early diversification ofPhilodendrontook place in the Amazon forest from Early to Middle Miocene, followed by colonization of the Atlantic forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor ofPhilodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.

2016 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia CMS Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G Schrago

Philodendron is the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies of Philodendron were conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely related genus, Homalomena, within the Philodendron clade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history of Philodendron evolution along the Amazonian and Atlantic Rain Forests, as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68 Philodendron species, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale of Philodendron and Homalomena lineage diversification. Our estimates indicate that American Homalomena is the sister clade to Philodendron. The early diversification of Philodendron took place in the Amazon Forest from Early to Middle Miocene, followed by colonization of the Atlantic Forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor of Philodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.


2016 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia CMS Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G Schrago

Philodendron is the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies of Philodendron were conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely related genus, Homalomena, within the Philodendron clade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history of Philodendron evolution along the Amazonian and Atlantic Rain Forests, as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68 Philodendron species, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale of Philodendron and Homalomena lineage diversification. Our estimates indicate that American Homalomena is the sister clade to Philodendron. The early diversification of Philodendron took place in the Amazon Forest from Early to Middle Miocene, followed by colonization of the Atlantic Forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor of Philodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.


Author(s):  
Mariela C. Castro ◽  
Murilo J. Dahur ◽  
Gabriel S. Ferreira

AbstractDidelphidae is the largest New World radiation of marsupials, and is mostly represented by arboreal, small- to medium-sized taxa that inhabit tropical and/or subtropical forests. The group originated and remained isolated in South America for millions of years, until the formation of the Isthmus of Panama. In this study, we present the first reconstruction of the biogeographic history of Didelphidae including all major clades, based on parametric models and stratified analyses over time. We also compiled all the pre-Quaternary fossil records of the group, and contrasted these data to our biogeographic inferences, as well as to major environmental events that occurred in the South American Cenozoic. Our results indicate the relevance of Amazonia in the early diversification of Didelphidae, including the divergence of the major clades traditionally ranked as subfamilies and tribes. Cladogeneses in other areas started in the late Miocene, an interval of intense shifts, especially in the northern portion of Andes and Amazon Basin. Occupation of other areas continued through the Pliocene, but few were only colonized in Quaternary times. The comparison between the biogeographic inference and the fossil records highlights some further steps towards better understanding the spatiotemporal evolution of the clade. Finally, our results stress that the early history of didelphids is obscured by the lack of Paleogene fossils, which are still to be unearthed from low-latitude deposits of South America.


2020 ◽  
Vol 287 (1921) ◽  
pp. 20192746
Author(s):  
Dakota M. Rowsey ◽  
Ryan M. Keenan ◽  
Sharon A. Jansa

A lineage colonizing a geographic region with no competitors may exhibit rapid diversification due to greater ecological opportunity. The resultant species diversity of this primary-colonizing (incumbent) clade may limit subsequent lineages' ability to persist unless these non-incumbent lineages are ecologically distinct. We compare the diversity in diet-related mandibular morphology of two sympatric murid rodent clades endemic to Luzon Island, Philippines—incumbent Phloeomyini and secondary-colonizing Chrotomyini—to the mandibular morphological diversity of Sahul Hydromyini, the sister clade of Chrotomyini and the incumbent murid lineage on the supercontinent of Sahul. This three-clade comparison allows us to test the hypothesis that incumbent lineages can force persistent ecological distinction of subsequent colonists at the time of colonization and throughout the subsequent history of the two sympatric clades. We find that Chrotomyini forms a subset of the diversity of their clade plus Sahul Hydromyini that minimizes overlap with Phloeomyini. We also infer that this differentiation extends to the stem ancestor of Chrotomyini and Sahul Hydromyini, consistent with a biotic filter imposed by Phloeomyini. Our work illustrates that incumbency has the potential to have a profound influence on the ecomorphological diversity of colonizing lineages at the island scale even when the traits in question are evolving at similar rates among independently colonizing clades.


2015 ◽  
Author(s):  
Evangelos Vlachos ◽  
Adán Pérez-García ◽  
Márton Rabi

Background. Large-sized testudinids had a long evolutionary history in Europe during the last 50 million years before becoming extinct in the beginning of the Pleistocene. Despite a 150-year long history in research and a decent fossil record, the European large testudinids have received limited attention so far. Methods. New excavations, descriptions of new specimens from Greece, Spain and Germany, revisions of previously published European taxa and comparative studies with extant testudinids now provide a major advancement in understanding the anatomy and evolutionary history of these turtles. This contribution aims to provide an updated summary of the accumulated knowledge on European large tortoises and to explore in detail their phylogenetic relationships in a global context (including small-sized extinct and extant taxa). The phylogenetic analysis is based on a new character/taxon matrix of morphological characters. Parsimony analysis was performed both with and without molecular backbone constraints. Results. We describe new material of large testudinids from Greece, Spain and Germany and revise most of the available material that has been previously published. Our morphology-based results are promising since they are consistent with recent molecular studies in identifying large testudinids traditionally referred to the Geochelone complex as polyphyletic. Furthermore, we were able to reproduce the molecular phylogeny of Mediterranean tortoises (Testudona). Discussion. The phylogenetic framework presented here allows addressing several open questions of the history of testudinids. First of all, it hints to a more complex biogeographic history of European testudinids than previously recognized. Although the early Paleogene history of testudinids cannot be accurately traced at the moment it seems probable that, besides Asia and North America, Europe also played a major role in the early diversification of Testudinidae. We demonstrate that large European testudinids do not form a monophyletic lineage. The widely recognized genus Cheirogaster should only include the Eocene type species, and exclude other large Paleogene or giant Neogene taxa so far known. Our analysis reveals that large size evolved independently in several clades and in several continents during warmer parts of the Cenozoic. Besides this general scheme other factors might have played a role regionally (e.g. changes in vegetation, island isolation).


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12094
Author(s):  
Jonathan P. Rio ◽  
Philip D. Mannion

First appearing in the latest Cretaceous, Crocodylia is a clade of semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister taxon relationship, in which they are more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia based on a critical reappraisal of published crocodylian character data matrices and extensive firsthand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone. This result is recovered regardless of the weighting strategy and treatment of quantitative characters. However, analyses using continuous characters and extended implied weighting (with high k-values) produced the most resolved, well-supported, and stratigraphically congruent topologies overall. Resolution of the gharial problem reveals that: (1) several gavialoids lack plesiomorphic features that formerly drew them towards the stem of Crocodylia; and (2) more widespread similarities occur between species traditionally divided into tomistomines and gavialoids, with these interpreted here as homology rather than homoplasy. There remains significant temporal incongruence regarding the inferred divergence timing of the extant gharials, indicating that several putative gavialids (‘thoracosaurs’) are incorrectly placed and require future re-appraisal. New alligatoroid interrelationships include: (1) support for a North American origin of Caimaninae in the latest Cretaceous; (2) the recovery of the early Paleogene South American taxon Eocaiman as a ‘basal’ alligatoroid; and (3) the paraphyly of the Cenozoic European taxon Diplocynodon. Among crocodyloids, notable results include modifications to the taxonomic content of Mekosuchinae, including biogeographic affinities of this clade with latest Cretaceous–early Paleogene Asian crocodyloids. In light of our new results, we provide a comprehensive review of the evolutionary and biogeographic history of Crocodylia, which included multiple instances of transoceanic and continental dispersal.


2015 ◽  
Author(s):  
Evangelos Vlachos ◽  
Adán Pérez-García ◽  
Márton Rabi

Background. Large-sized testudinids had a long evolutionary history in Europe during the last 50 million years before becoming extinct in the beginning of the Pleistocene. Despite a 150-year long history in research and a decent fossil record, the European large testudinids have received limited attention so far. Methods. New excavations, descriptions of new specimens from Greece, Spain and Germany, revisions of previously published European taxa and comparative studies with extant testudinids now provide a major advancement in understanding the anatomy and evolutionary history of these turtles. This contribution aims to provide an updated summary of the accumulated knowledge on European large tortoises and to explore in detail their phylogenetic relationships in a global context (including small-sized extinct and extant taxa). The phylogenetic analysis is based on a new character/taxon matrix of morphological characters. Parsimony analysis was performed both with and without molecular backbone constraints. Results. We describe new material of large testudinids from Greece, Spain and Germany and revise most of the available material that has been previously published. Our morphology-based results are promising since they are consistent with recent molecular studies in identifying large testudinids traditionally referred to the Geochelone complex as polyphyletic. Furthermore, we were able to reproduce the molecular phylogeny of Mediterranean tortoises (Testudona). Discussion. The phylogenetic framework presented here allows addressing several open questions of the history of testudinids. First of all, it hints to a more complex biogeographic history of European testudinids than previously recognized. Although the early Paleogene history of testudinids cannot be accurately traced at the moment it seems probable that, besides Asia and North America, Europe also played a major role in the early diversification of Testudinidae. We demonstrate that large European testudinids do not form a monophyletic lineage. The widely recognized genus Cheirogaster should only include the Eocene type species, and exclude other large Paleogene or giant Neogene taxa so far known. Our analysis reveals that large size evolved independently in several clades and in several continents during warmer parts of the Cenozoic. Besides this general scheme other factors might have played a role regionally (e.g. changes in vegetation, island isolation).


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Daysa Athaydes ◽  
Cayo A. R. Dias ◽  
Renato Gregorin ◽  
Fernando A. Perini

Sign in / Sign up

Export Citation Format

Share Document