scholarly journals Dietary morphology of two island-endemic murid rodent clades is consistent with persistent, incumbent-imposed competitive interactions

2020 ◽  
Vol 287 (1921) ◽  
pp. 20192746
Author(s):  
Dakota M. Rowsey ◽  
Ryan M. Keenan ◽  
Sharon A. Jansa

A lineage colonizing a geographic region with no competitors may exhibit rapid diversification due to greater ecological opportunity. The resultant species diversity of this primary-colonizing (incumbent) clade may limit subsequent lineages' ability to persist unless these non-incumbent lineages are ecologically distinct. We compare the diversity in diet-related mandibular morphology of two sympatric murid rodent clades endemic to Luzon Island, Philippines—incumbent Phloeomyini and secondary-colonizing Chrotomyini—to the mandibular morphological diversity of Sahul Hydromyini, the sister clade of Chrotomyini and the incumbent murid lineage on the supercontinent of Sahul. This three-clade comparison allows us to test the hypothesis that incumbent lineages can force persistent ecological distinction of subsequent colonists at the time of colonization and throughout the subsequent history of the two sympatric clades. We find that Chrotomyini forms a subset of the diversity of their clade plus Sahul Hydromyini that minimizes overlap with Phloeomyini. We also infer that this differentiation extends to the stem ancestor of Chrotomyini and Sahul Hydromyini, consistent with a biotic filter imposed by Phloeomyini. Our work illustrates that incumbency has the potential to have a profound influence on the ecomorphological diversity of colonizing lineages at the island scale even when the traits in question are evolving at similar rates among independently colonizing clades.

2016 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia CMS Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G Schrago

Philodendron is the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies of Philodendron were conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely related genus, Homalomena, within the Philodendron clade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history of Philodendron evolution along the Amazonian and Atlantic Rain Forests, as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68 Philodendron species, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale of Philodendron and Homalomena lineage diversification. Our estimates indicate that American Homalomena is the sister clade to Philodendron. The early diversification of Philodendron took place in the Amazon Forest from Early to Middle Miocene, followed by colonization of the Atlantic Forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor of Philodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.


2016 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia CMS Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G Schrago

Philodendron is the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies of Philodendron were conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely related genus, Homalomena, within the Philodendron clade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history of Philodendron evolution along the Amazonian and Atlantic Rain Forests, as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68 Philodendron species, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale of Philodendron and Homalomena lineage diversification. Our estimates indicate that American Homalomena is the sister clade to Philodendron. The early diversification of Philodendron took place in the Amazon Forest from Early to Middle Miocene, followed by colonization of the Atlantic Forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor of Philodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1744 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G. Schrago

Philodendronis the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies ofPhilodendronwere conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely-related genus,Homalomena, within thePhilodendronclade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history ofPhilodendronevolution along the Amazonian and Atlantic rainforests as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68Philodendronspecies, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale ofPhilodendronandHomalomenalineage diversification. Our estimates indicate that AmericanHomalomenais the sister clade toPhilodendron. The early diversification ofPhilodendrontook place in the Amazon forest from Early to Middle Miocene, followed by colonization of the Atlantic forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor ofPhilodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.


Phytotaxa ◽  
2016 ◽  
Vol 270 (2) ◽  
pp. 71 ◽  
Author(s):  
SLAVOMÍR ADAMČÍK ◽  
MIROSLAV CABOŇ ◽  
URSULA EBERHARDT ◽  
MALKA SABA ◽  
FELIX HAMPE ◽  
...  

The current generally accepted concept of Russula maculata defines the species by yellow-brownish spots on the basidiomata, an acrid taste, a yellow spore print and a red pileus. This concept was tested using collections originating from various geographical areas mainly in Europe. Analyses of the ITS region suggested that there were three species within this broad concept. One of them, R. maculata, was identified based on the sequence from the epitype. Two other species, R. nympharum and R. sp., are described here as newly identified species. The European species R. maculata and R. nympharum grow in deciduous forests, are similar in their field aspect and are distinctly different in micro-morphological characteristics of spores, pleurocystidia and pileipellis. An Asian species, R. sp., is associated with pine and has smaller basidiomata and spores. These three species form the R. maculata complex and represent the sister clade to the R. globispora complex. This clade consists of species also characterized by a yellow-brownish context discolouration but with a different type of spore ornamentation. All of the other tested species had an acrid taste and yellow spore print but did not have a conspicuous yellow-brownish context discolouration and were placed in various unrelated clades.


2021 ◽  
pp. 162-169
Author(s):  
Kyle E. Jaynes

The Príncipe giant tree frog Leptopelis palmatus is endemic to the small oceanic island of Príncipe in the Gulf of Guinea. For several decades, this charismatic but poorly known species was confused with another large tree frog species from continental Africa, L. rufus. Phylogenetic relationships within the African genus Leptopelis are poorly understood and consequently the evolutionary history of L. palmatus and its affinity to L. rufus remain unclear. In this study, we combined mitochondrial DNA (mtDNA), morphological, and acoustic data for L. palmatus and L. rufus to assess different axes of divergence between the species. Our mtDNA gene tree for the genus Leptopelis indicated that L. palmatus is not closely related to L. rufus or other large species of Leptopelis. Additionally, we found low mtDNA diversity in L. palmatus across its range on Príncipe. We found significant morphological differences between females of L. rufus and L. palmatus, but not between males. We characterised the advertisement call of L. palmatus for the first time, which is markedly distinct from L. rufus. Finally, we summarised our observations of L. palmatus habitats and additional notes on phenotypic variation and behaviour. Our study reinforces the distinctiveness of L. palmatus and provides information important for the conservation of this endangered species. A rã gigante de Príncipe, Leptopelis palmatus, é endêmica da pequena ilha oceânica de Príncipe no Golfo da Guiné. Por várias décadas, esta espécie carismática mas pouco conhecida foi confundida com outra espécie grande de rã da África continental, L. rufus. As relações filogenéticas dentro do gênero africano Leptopelis são mal compreendidas e, conseqüentemente, a história evolutiva de L. palmatus e sua afinidade com L. rufus permanecem obscuras. Neste estudo, combinamos dados de DNA mitocondrial (mtDNA), morfológicos e acústicos de L. palmatus e L. rufus para avaliar diferentes eixos de divergência entre as espécies. Nossa árvore de genes de mtDNA para o gênero Leptopelis indicou que L. palmatus não está proximamente relacionada a L. rufus ou outras espécies grandes de Leptopelis, e encontramos baixa diversidade de mtDNA em L. palmatus em toda a sua distribuição em Príncipe. Encontramos diferenças morfológicas significativas entre as fêmeas de L. rufus e L. palmatus, mas não entre os machos. Caracterizamos o canto reprodutor de L. palmatus pela primeira vez, que é marcadamente distinto do de L. rufus. Finalmente, resumimos nossas observações dos habitats de L. palmatus e notas adicionais sobre variação fenotípica e comportamento. Nosso estudo fornece informações importantes para a conservação dessa espécie ameaçada de extinção


2021 ◽  
Vol 288 (1946) ◽  
pp. 20202967
Author(s):  
Romana Limberger ◽  
Gregor F. Fussmann

Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.


1993 ◽  
Vol 67 (4) ◽  
pp. 549-570 ◽  
Author(s):  
Bruce S. Lieberman

Phylogenetic parsimony analysis was used to classify the Siegenian–Eifelian “Metacryphaeus group” of the family Calmoniidae. Thirty-eight exoskeletal characters for 16 taxa produced a shortest-length cladogram with a consistency index of 0.49. A classification based on retrieving the structure of this cladogram recognizes nine genera: Typhloniscus Salter, Plesioconvexa n. gen., Punillaspis Baldis and Longobucco, Eldredgeia n. gen., Clarkeaspis n. gen., Malvinocooperella n. gen., Wolfartaspis Cooper, Plesiomalvinella Lieberman, Edgecombe, and Eldredge (used to represent the malvinellid clade), and Metacryphaeus Reed. The malvinellid clade is most closely related to a revised monophyletic Metacryphaeus. Typhloniscus is the basal member of the “Metacryphaeus group,” and the monotypic Wolfartaspis is sister to the clade containing the malvinellids and Metacryphaeus. Six new species are diagnosed: Punillaspis n. sp. A, “Clarkeaspis” gouldi, Clarkeaspis padillaensis, Malvinocooperella pregiganteus, Metacryphaeus curvigena, and Metacryphaeus branisai. Primitively, this group has South African and Andean affinities, and its evolutionary history suggests rapid diversification. In addition, evolutionary patterns in this group, and the distribution of character reversals, call into question certain notions about the nature of adaptive radiations. The distributions of taxa may answer questions about the number of marine transgressive/regressive cycles in the Emsian–Eifelian of the Malvinokaffric Realm.


2021 ◽  
Vol 20 (3) ◽  
pp. 5-20
Author(s):  
Jan Pezda ◽  

The study historicizes the phenomenon of tourism as a purely modern variety of the mobility of which inner morphology began taking form at the turn of the 19th centuries. First, the study draws on the innovative approach of Hasso Spode, historian of mentality, who has a profound influence over contemporary research of the history of tourism in German historiography. Using his theoretical framing, the study discloses how travel that, from the late 18th century, had been a diverse set of motives, experiences, ideas and practices, started to be cemented by a psychomental foundation: the tourist gaze. Then, the study interprets tourism as the product of spatialization of time and temporalization of space. Finally, the article, using Zygmunt Bauman´s theoretical conception of “retrotopia”, clips today's form of tourism together with its primordial form and leads to a conclusion that the tourism as a controversial phenomenon of modern times is endowed with human nostalgia, romance, a never-ending desire for authenticity as well as an eternal obsession with the idea of “progress” encompassing also utopian notions.


Author(s):  
Sergei Volis ◽  
Salit Kark

The study of biodiversity has received wide attention in recent decades. Biodiversity has been defined in various ways (Gaston and Spicer, 1998, Purvis and Hector 2000, and chapters in this volume). Discussion regarding its definitions is dynamic, with shifts between the more traditional emphasis on community structure to emphasis on the higher ecosystem level or the lower population levels (e.g., chapters in this volume, Poiani et al. 2000). One of the definitions, proposed in the United Nations Convention on Biological Diversity held in Rio de Janeiro (1992) is “the diversity within species, between species and of ecosystems.” The within-species component of diversity is further defined as “the frequency and diversity of different genes and/or genomes . . .” (IUCN 1993) as estimated by the genetic and morphological diversity within species. While research and conservation efforts in the past century have focused mainly on the community level, they have recently been extended to include the within-species (Hanski 1989) and the ecosystem levels. The component comprising within-species genetic and morphological diversity is increasingly emphasized as an important element of biodiversity (UN Convention 1992). Recent studies suggest that patterns of genetic diversity significantly influence the viability and persistence of local populations (Frankham 1996, Lacy 1997, Riddle 1996, Vrijenhoek et al. 1985). Revealing geographical patterns of genetic diversity is highly relevant to conservation biology and especially to explicit decision-making procedures allowing systematic rather than opportunistic selection of populations and areas for in situ protection (Pressey et al. 1993). Therefore, studying spatial patterns in within-species diversity may be vital in defining and prioritizing conservation efforts (Brooks et al. 1992). Local populations of a species often differ in the ecological conditions experienced by their members (Brown 1984, Gaston 1990, Lawton et al. 1994). These factors potentially affect population characteristics, structure, and within-population genetic and morphological diversity (Brussard 1984, Lawton 1995, Parsons 1991). The spatial location of a population within a species range may be related to its patterns of diversity (Lesica and Allendorf 1995). Thus, detecting within-species diversity patterns across distributional ranges is important for our understanding of ecological and evolutionary (e.g., speciation) processes (Smith et al. 1997), and for the determination of conservation priorities (Kark 1999).


2015 ◽  
Vol 282 (1810) ◽  
pp. 20150569 ◽  
Author(s):  
Michael J. Benton

Macroevolution, encompassing the deep-time patterns of the origins of modern biodiversity, has been discussed in many contexts. Non-Darwinian models such as macromutations have been proposed as a means of bridging seemingly large gaps in knowledge, or as a means to explain the origin of exquisitely adapted body plans. However, such gaps can be spanned by new fossil finds, and complex, integrated organisms can be shown to have evolved piecemeal. For example, the fossil record between dinosaurs and Archaeopteryx has now filled up with astonishing fossil intermediates that show how the unique plexus of avian adaptations emerged step by step over 60 Myr. New numerical approaches to morphometrics and phylogenetic comparative methods allow palaeontologists and biologists to work together on deep-time questions of evolution, to explore how diversity, morphology and function have changed through time. Patterns are more complex than sometimes expected, with frequent decoupling of species diversity and morphological diversity, pointing to the need for some new generalizations about the processes that lie behind such patterns.


Sign in / Sign up

Export Citation Format

Share Document