scholarly journals Medium-sized exotic prey create novel food webs: the case of predators and scavengers consuming lagomorphs

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2273 ◽  
Author(s):  
Facundo Barbar ◽  
Fernando Hiraldo ◽  
Sergio A. Lambertucci

Food web interactions are key to community structure. The introduction of species can be seen as an uncontrolled experiment of the addition of species. Introduced species lead to multiple changes, frequently threatening the native biodiversity. However, little is known about their direct effect on the upper level of the food web. In this study we review empirical data on the predator–prey relationship between the introduced lagomorphs and their consumers, and use meta-analytical tools to quantify the strength of their interactions. We expect that exotic lagomorphs will destabilize food webs, affect ecological processes and compromise the conservation of the invaded regions. We found 156 studies on the diet of 43 species of predators that consume lagomorphs as exotic preys in South America and Oceania. We found an average exotic lagomorphs-predator link of 20% which indicates a strong interaction, given that the average for the strongest links with native prey (when lagomorphs are not included in the predator diet) is about 24%. Additionally, this last link decreases to 17% when lagomorphs are present. When lagomorphs arrive in a new environment they may become the most important resource for predators, producing an unstable equilibrium in the novel food web. Any disruption of this interaction could have catastrophic consequences for the native diversity by directly impacting predators or indirectly impacting native preys by apparent competition. Eradication or any change in their abundances should be carefully considered in conservation actions since those will have great impacts on predator populations and ultimately in the whole communities.

Author(s):  
Gary A. Palis ◽  
Michael D. Rose

Most of this book focuses on the biogeography and ecology of plants and various animal taxa on islands in the Sea of Cortés. These chapters highlight the historical and biogeographical factors that contributed to the patterns of species distribution and co-occurrence among islands. However, these patterns also reflect the action of ecological processes because the species present interact, directly or indirectly, within the food web that occurs on any given island. Island food webs may also be unique from other communities in the degree to which their structure and dynamics are also strongly influenced by the surrounding ocean. We believe that a deeper appreciation of the trophic connections between the sea and the land, and the resulting effects on the structure and dynamics of island food webs, is key to understanding the biogeography of species on islands. Many factors that operate through the food web can enhance or depress populations in a way that affects their local distribution and persistence, and, as a consequence, affects patterns of diversity on a biogeographical scale. Of these, we recognize three as being particularly important: the availability and quality of resources, competition, and consumption (i.e., by herbivores, predators, parasites). Bottom-up factors (nutrients, primary productivity, and food availability to consumers) set limits on island productivity and hence on the potential abundance of a particular group. Within a given community, secondary productivity and population density are subsequently constrained by top-down (i.e., consumption) and competitive effects. One of our goals in this chapter is to show how processes that influence productivity of gulf islands determine patterns of abundance of organisms on islands and affect interactions among species and trophic levels in these systems. Our second goal is to demonstrate the importance of spatial and temporal variability in productivity in determining the structure and dynamics of island food webs. Using our long-term studies of plants and consumers on islands in the northern gulf, we show that productivity varies greatly, both among years and islands, as a result of both local conditions and global climatic factors. Such variable productivity markedly affects food web dynamics and ultimately the abundance of species on the islands in the Sea of Cortés.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2828
Author(s):  
Yulun Guo ◽  
Tao Wang ◽  
García Molinos Jorge ◽  
Huan Zhang ◽  
Peiyu Zhang ◽  
...  

Trophic niches condition the energetic performance of species within food webs providing a vital link between food web assembly, species diversity, and functioning of ecosystems. Our understanding of this important link is, however, limited by the lack of empirical tools that can be easily applied to compare entire food webs at regional scales. By comparison, with different a priori synthetic models defined according to specific assembly rules (i.e., purely random, limiting similarity, and niche filtering), we demonstrate that a set of food web properties (trophic richness, evenness, and divergence) are controlled by ecological processes. We further demonstrate that although both limiting similarity and niche filtering are statistically significant assembly processes shaping our studied lake food webs, their relative importance is richness-dependent, and contextual to the specific food web property under consideration. Our results have both important theoretical and practical implications. Theoretically, the observed richness-dependent variation on food web properties contradicts the common criticism on food web theory that food web properties are roughly scale-invariant. Practically, these properties can help avoiding spurious conclusions, while providing useful information for multiple food web niche spaces supporting the ecosystem functioning.


1999 ◽  
Vol 56 (12) ◽  
pp. 2477-2486 ◽  
Author(s):  
R Ian Perry ◽  
Peter A Thompson ◽  
David L Mackas ◽  
Paul J Harrison ◽  
Douglas R Yelland

Surveys were conducted in spring 1992 to examine the use of 13C/12C ratios to differentiate pelagic food webs and to trace food web interactions between adjacent continental shelf and slope/deep ocean environments off southwestern British Columbia, Canada. Salinity was used to define shelf or slope/deep ocean water masses and their productivity conditions because eddies and meanders at the shelf break were observed to draw water off the shelf. The 13C/12C ratio of plankton was related to the mean upper layer (0-50 m) salinity. 13C abundance was enriched (relative to 12C) in the shelf water mass compared with the slope water mass. This enrichment persisted up the food web from particulate organic matter through three size-classes of zooplankton to larval fish. The cross-shelf spatial scale separating these food webs, as determined from spatial semivariograms of 13C/12C and the upper layer mean salinity, was 40-45 km, similar to the Rossby radius for eddies at this location (50 km). Larval fish may provide a means to monitor exchanges of plankton between geographically adjacent food webs if time scales for incorporation of new isotope signatures from diets into tissues are determined.


Author(s):  
Christer Brönmark ◽  
Lars-Anders Hansson

The chapter introduces the reader to the book structure, including the overall topics the abiotic frame, the organisms, biotics, food web interactions and biodiversity and environmental threats. In addition to laying out the structure, this chapter brings up some overarching concepts such as the niche, generalists versus specialists and factors determining the distribution of organisms in natural ecosystems.


2000 ◽  
Vol 27 (4) ◽  
pp. 1740-1746 ◽  
Author(s):  
Ingemar Ahlgren ◽  
Rolf Erikson ◽  
Luis Moreno ◽  
Lorena Pacheco ◽  
Salvador Montenegro-Guillén ◽  
...  

2021 ◽  
Vol 61 ◽  
pp. 101208
Author(s):  
Swagata Sinha ◽  
Arnab Banerjee ◽  
Nabyendu Rakshit ◽  
Akkur V. Raman ◽  
Punyasloke Bhadury ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Remo Ryser ◽  
Myriam R. Hirt ◽  
Johanna Häussler ◽  
Dominique Gravel ◽  
Ulrich Brose

AbstractHabitat fragmentation and eutrophication have strong impacts on biodiversity. Metacommunity research demonstrated that reduction in landscape connectivity may cause biodiversity loss in fragmented landscapes. Food-web research addressed how eutrophication can cause local biodiversity declines. However, there is very limited understanding of their cumulative impacts as they could amplify or cancel each other. Our simulations of meta-food-webs show that dispersal and trophic processes interact through two complementary mechanisms. First, the ‘rescue effect’ maintains local biodiversity by rapid recolonization after a local crash in population densities. Second, the ‘drainage effect’ stabilizes biodiversity by preventing overshooting of population densities on eutrophic patches. In complex food webs on large spatial networks of habitat patches, these effects yield systematically higher biodiversity in heterogeneous than in homogeneous landscapes. Our meta-food-web approach reveals a strong interaction between habitat fragmentation and eutrophication and provides a mechanistic explanation of how landscape heterogeneity promotes biodiversity.


Sign in / Sign up

Export Citation Format

Share Document