limiting similarity
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikael Pontarp

AbstractIt is well known that ecological and evolutionary processes act in concert while shaping biological communities. Diversification can, for example, arise through ecological opportunity and adaptive radiations and competition play an essential role in such diversification. Eco-evolutionary components of competition are thus important for our understanding of community assembly. Such understanding in turn facilitates interpretation of trait- and phylogenetic community patterns in the light of the processes that shape them. Here, I investigate the link between competition, diversification, and trait- and phylogenetic- community patterns using a trait-based model of adaptive radiations. I evaluate the paradigm that competition is an ecological process that drives large trait- and phylogenetic community distances through limiting similarity. Contrary to the common view, I identify low or in some cases counterintuitive relationships between competition and mean phylogenetic distances due to diversification late in evolutionary time and peripheral parts of niche space when competition is weak. Community patterns as a function of competition also change as diversification progresses as the relationship between competition and trait similarity among species can flip from positive to negative with time. The results thus provide novel perspectives on community assembly and emphasize the importance of acknowledging eco-evolutionary processes when interpreting community data.


Plant Ecology ◽  
2021 ◽  
Author(s):  
Emma-Liina Marjakangas ◽  
Otso Ovaskainen ◽  
Nerea Abrego ◽  
Vidar Grøtan ◽  
Alexandre A. de Oliveira ◽  
...  

AbstractSpecies co-occurrences in local communities can arise independent or dependent on species’ niches. However, the role of niche-dependent processes has not been thoroughly deciphered when generalized to biogeographical scales, probably due to combined shortcomings of data and methodology. Here, we explored the influence of environmental filtering and limiting similarity, as well as biogeographical processes that relate to the assembly of species’ communities and co-occurrences. We modelled jointly the occurrences and co-occurrences of 1016 tropical tree species with abundance data from inventories of 574 localities in eastern South America. We estimated species co-occurrences as raw and residual associations with models that excluded and included the environmental effects on the species’ co-occurrences, respectively. Raw associations indicate co-occurrence of species, whereas residual associations indicate co-occurrence of species after accounting for shared responses to environment. Generally, the influence of environmental filtering exceeded that of limiting similarity in shaping species’ co-occurrences. The number of raw associations was generally higher than that of the residual associations due to the shared responses of tree species to the environmental covariates. Contrary to what was expected from assuming limiting similarity, phylogenetic relatedness or functional similarity did not limit tree co-occurrences. The proportions of positive and negative residual associations varied greatly across the study area, and we found a significant tendency of some biogeographical regions having higher proportions of negative associations between them, suggesting that large-scale biogeographical processes limit the establishment of trees and consequently their co-occurrences.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qixin He ◽  
Shai Pilosof ◽  
Kathryn E. Tiedje ◽  
Karen P. Day ◽  
Mercedes Pascual

In high-transmission endemic regions, local populations of Plasmodium falciparum exhibit vast diversity of the var genes encoding its major surface antigen, with each parasite comprising multiple copies from this diverse gene pool. This strategy to evade the immune system through large combinatorial antigenic diversity is common to other hyperdiverse pathogens. It underlies a series of fundamental epidemiological characteristics, including large reservoirs of transmission from high prevalence of asymptomatics and long-lasting infections. Previous theory has shown that negative frequency-dependent selection (NFDS) mediated by the acquisition of specific immunity by hosts structures the diversity of var gene repertoires, or strains, in a pattern of limiting similarity that is both non-random and non-neutral. A combination of stochastic agent-based models and network analyses has enabled the development and testing of theory in these complex adaptive systems, where assembly of local parasite diversity occurs under frequency-dependent selection and large pools of variation. We show here the application of these approaches to theory comparing the response of the malaria transmission system to intervention when strain diversity is assembled under (competition-based) selection vs. a form of neutrality, where immunity depends only on the number but not the genetic identity of previous infections. The transmission system is considerably more persistent under NFDS, exhibiting a lower extinction probability despite comparable prevalence during intervention. We explain this pattern on the basis of the structure of strain diversity, in particular the more pronounced fraction of highly dissimilar parasites. For simulations that survive intervention, prevalence under specific immunity is lower than under neutrality, because the recovery of diversity is considerably slower than that of prevalence and decreased var gene diversity reduces parasite transmission. A Principal Component Analysis of network features describing parasite similarity reveals that despite lower overall diversity, NFDS is quickly restored after intervention constraining strain structure and maintaining patterns of limiting similarity important to parasite persistence. Given the described enhanced persistence under perturbation, intervention efforts will likely require longer times than the usual practice to eliminate P. falciparum populations. We discuss implications of our findings and potential analogies for ecological communities with non-neutral assembly processes involving frequency-dependence.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Yuanbao Du ◽  
Liqing Fan ◽  
Zhenghui Xu ◽  
Zhixin Wen ◽  
Tianlong Cai ◽  
...  

The observed patterns and underlying mechanisms of elevational beta-diversity have been explored intensively, but multi-dimensional comparative studies remain scarce. Herein, across distinct beta-diversity components, dimensions and species groups, we designed a multi-faceted comparative framework aiming to reveal the general rules in the observed patterns and underlying causes of elevational beta-diversity. We have found that: first, the turnover process dominated altitudinal patterns of species beta-diversity ( β sim > β sne ), whereas the nestedness process appeared relatively more important for elevational trait dissimilarity ( β funcsim < β funcsne ); second, the taxonomic turnover was relative higher than its phylogenetic and functional analogues ( β sim > β phylosim / β funcsim ), conversely, nestedness-resultant trait dissimilarity tended to be higher than the taxonomic and phylogenetic measures ( β funcsne > β sne / β phylosne ); and third, as elevational distance increased, the contradicting dynamics of environmental filtering and limiting similarity have jointly led the elevational patterns of beta-diversity, especially at taxonomic dimension. Based on these findings, we infer that the species turnover among phylogenetic relatives sharing similar functional attributes appears to be the main cause of shaping the altitudinal patterns of multi-dimensional beta-diversity. Owing to the methodological limitation in the randomization approach, currently, it remains extremely challenging to distinguish the influence of the neutral process from the offset between opposing niche-based processes. Despite the complexities and uncertainties during species assembling, with a multi-dimensional comparative perspective, this work offers us several important commonalities of elevational beta-diversity dynamics.


2020 ◽  
Author(s):  
Qixin He ◽  
Shai Pilosof ◽  
Kathryn E. Tiedje ◽  
Karen P. Day ◽  
Mercedes Pascual

AbstractIn high-transmission endemic regions, local populations of Plasmodium falciparum exhibit vast diversity of the var genes encoding its major surface antigen, with each parasite comprising multiple copies from this diverse gene pool. This strategy to evade the immune system through large combinatorial antigenic diversity is common to other hyperdiverse pathogens. It underlies a series of fundamental epidemiological characteristics, including large reservoirs of transmission from high prevalence of asymptomatics and long-lasting infections. Previous theory has shown that negative frequency-dependent selection (NFDS) mediated by the acquisition of specific immunity by hosts structures the diversity of var gene repertoires (strains), in a pattern of limiting similarity that is both non-random and non-neutral. A combination of stochastic agent-based models and network analyses has enabled the development and testing of theory in these complex adaptive systems, where assembly of local parasite diversity occurs under frequency-dependent selection and large pools of variation. We show here the application of these approaches to theory comparing the resilience of the malaria transmission system to intervention when strain diversity is assembled under (competition-based) selection vs. a form of neutrality, where immunity depends only on the number but not the genetic identity of previous infections. The transmission system is considerably more resilient under NFDS, exhibiting a lower extinction probability despite comparable prevalence during intervention. We explain this pattern on the basis of the structure of strain diversity, in particular the more pronounced fraction of highly dissimilar parasites. For simulations that survive intervention, prevalence under specific immunity is lower than under neutrality, because the recovery of diversity is considerably slower than that of prevalence and decreased var gene diversity reduces parasite transmission. A Principal Component Analysis of network features describing parasite similarity reveals that despite lower overall diversity, NFDS is quickly restored after intervention constraining strain structure and maintaining patterns of limiting similarity important to parasite persistence. Given the resulting resilience to perturbations, intervention efforts will likely require longer times than the usual practice to eliminate P. falciparum populations. We discuss implications of our findings and potential analogies for ecological communities with non-neutral assembly processes involving frequency-dependence.


2020 ◽  
Vol 287 (1939) ◽  
pp. 20201922
Author(s):  
W. Petryshen ◽  
C. M. Henderson ◽  
K. De Baets ◽  
E. Jarochowska

The repeated emergence of similar morphologies in the dental elements of Permian Sweetognathus conodonts has been a hypothesized example of parallel evolution. To test if morphological parallelisms occur between isolated Sweetognathus lineages, this study uses two-dimensional-based geometric morphometrics combined with a revised and expanded phylogeny of Permian Sweetognathus conodonts to quantify dental element trait distributions and compare the phenotypic trajectories between lineages. A hierarchical clustering method was used to identify recurrent species pairs based on principal component scores describing their morphological variation, with the further incorporation of widely used ecological metrics such as limiting similarity and morphological overlap. Our research implies that a major contributor to conodont diversity in Palaeozoic marine trophic networks is the emergence of recurrent parallel morphologies via disruptive and directional selection. This study illustrates the mechanisms through which conodonts achieved their status as hyper-diverse predators and scavengers, contributing substantially to the complexity of Palaeozoic marine communities.


2020 ◽  
Author(s):  
Wyatt Petryshen ◽  
Charles M. Henderson ◽  
Kenneth De Baets ◽  
Emilia Jarochowska

The repeated emergence of similar morphologies in the dental elements of Permian Sweetognathus conodonts has been a hypothesized example of parallel evolution. To test if morphological parallelisms occur between isolated Sweetognathus lineages, this study uses two-dimensional-based geometric morphometrics combined with a revised and expanded phylogeny of Permian Sweetognathus conodonts to quantify dental element trait distributions and compare the phenotypic trajectories between lineages. A hierarchical clustering method was used to identify recurrent species pairs based on principal component scores describing their morphological variation, with the further incorporation of widely used ecological metrics such as limiting similarity and morphological overlap. Our research implies that a major contributor to conodont diversity in Palaeozoic marine trophic networks is the emergence of recurrent parallel morphologies via disruptive and directional selection. This study illustrates the mechanisms through which conodonts achieved their status as hyper-diverse predators and scavengers, contributing substantially to the complexity of Palaeozoic marine communities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gábor Borics ◽  
Viktória B-Béres ◽  
István Bácsi ◽  
Balázs A. Lukács ◽  
E. T-Krasznai ◽  
...  

Abstract Environmental filtering and limiting similarity are those locally acting processes that influence community structure. These mechanisms acting on the traits of species result in trait convergence or divergence within the communities. The role of these processes might change along environmental gradients, and it has been conceptualised in the stress-dominance hypothesis, which predicts that the relative importance of environmental filtering increases and competition decreases with increasing environmental stress. Analysing trait convergence and divergence in lake phytoplankton assemblages, we studied how the concepts of ‘limiting similarity’ versus ‘environmental filtering’ can be applied to these microscopic aquatic communities, and how they support or contradict the stress-dominance hypothesis. Using a null model approach, we investigated the divergence and convergence of phytoplankton traits along environmental gradients represented by canonical axes of an RDA. We used Rao’s quadratic entropy as a measure of functional diversity and calculated effect size (ES) values for each sample. Negative ES values refer to trait convergence, i.e., to the higher probability of the environmental filtering in community assembly, while positive values indicate trait divergence, stressing the importance of limiting similarity (niche partitioning), that is, the competition between the phytoplankters. Our results revealed that limiting similarity and environmental filtering may operate simultaneously in phytoplankton communities, but these assembly mechanisms influenced the distribution of phytoplankton traits differently, and the effects show considerable changes along with the studied scales. Studying the changes of ES values along with the various scales, our results partly supported the stress-dominance hypothesis, which predicts that the relative importance of environmental filtering increases and competition decreases with increasing environmental stress.


2020 ◽  
Vol 741 ◽  
pp. 140459
Author(s):  
Gábor Várbíró ◽  
Gábor Borics ◽  
Maria Helena Novais ◽  
Maria Manuela Morais ◽  
Frédéric Rimet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document