scholarly journals Structure and properties of slow-resorbing nanofibers obtained by (co-axial) electrospinning as tissue scaffolds in regenerative medicine

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4125 ◽  
Author(s):  
Andrzej Hudecki ◽  
Joanna Gola ◽  
Saeid Ghavami ◽  
Magdalena Skonieczna ◽  
Jarosław Markowski ◽  
...  

With the rapid advancement of regenerative medicine technologies, there is an urgent need for the development of new, cell-friendly techniques for obtaining nanofibers—the raw material for an artificial extracellular matrix production. We investigated the structure and properties of PCL10nanofibers, PCL5/PCL10core-shell type nanofibers, as well as PCL5/PCLAgnanofibres prepared by electrospinning. For the production of the fiber variants, a 5–10% solution of polycaprolactone (PCL) (Mw= 70,000–90,000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibers containing PCLAg1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg, by using organic acids as solvents, is a robust technique. Furthermore, the incorporation of silver nanoparticles into PCL5/PCLAgmakes such nanofibers toxic to model microbes without compromising its biocompatibility. Nanofibers obtained such way may then be used in regenerative medicine, for the preparation of extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) as bioscaffolds for generation of other types of artificial tissues, (iii) and as carriers of nanocapsules for local drug delivery. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahydrofuran (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field.

2017 ◽  
Author(s):  
Andrzej Hudecki ◽  
Joanna Gola ◽  
Saeid Ghavami ◽  
Magdalena Skonieczna ◽  
Jarosław Markowski ◽  
...  

We investigated the structure and properties of PCL10 nanofiber, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fibre variants, a 5-10% solution of polycaprolactone (Mw = 70000-90000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibres containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg by using organic acids as solvents is a robust technique. Such way obtained nanofibres may then be used in regenerative medicine for extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) and as carriers of drug delivery nanocapsules. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahyfrofurna (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field.


2017 ◽  
Author(s):  
Andrzej Hudecki ◽  
Joanna Gola ◽  
Saeid Ghavami ◽  
Magdalena Skonieczna ◽  
Jarosław Markowski ◽  
...  

We investigated the structure and properties of PCL10 nanofiber, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fibre variants, a 5-10% solution of polycaprolactone (Mw = 70000-90000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibres containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg by using organic acids as solvents is a robust technique. Such way obtained nanofibres may then be used in regenerative medicine for extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) and as carriers of drug delivery nanocapsules. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahyfrofurna (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field.


2021 ◽  
Vol 26 ◽  
pp. 100716
Author(s):  
Juan Manuel Galdopórpora ◽  
Angelina Ibar ◽  
Maria Victoria Tuttolomondo ◽  
Martin Federico Desimone

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


2012 ◽  
Vol 02 (02) ◽  
pp. 192-198 ◽  
Author(s):  
Xuan Li ◽  
Yiding Shen ◽  
Haihua Wang ◽  
Guiqiang Fei

Nanoscale ◽  
2018 ◽  
Vol 10 (19) ◽  
pp. 9186-9191 ◽  
Author(s):  
Nathalie Claes ◽  
Ramesh Asapu ◽  
Natan Blommaerts ◽  
Sammy W. Verbruggen ◽  
Silvia Lenaerts ◽  
...  

Using electron microscopy, polymer encapsulated silver nanoparticles were visualized and their coverage, molecular structure and plasmonic properties could be investigated.


2018 ◽  
Author(s):  
Monika Saini ◽  
S. K. Singh ◽  
Rajni Shukla ◽  
Tanuj Deswal

Sign in / Sign up

Export Citation Format

Share Document