silkworm silk
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Quan Wan ◽  
Mei Yang ◽  
Jiaqi Hu ◽  
Fang Lei ◽  
Yajun Shuai ◽  
...  

AbstractSilk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of ‘water pockets’. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk’s hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually ‘spun’.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 361
Author(s):  
Wenliang Qian ◽  
Yan Yang ◽  
Zheng Li ◽  
Yuting Wu ◽  
Xuechuan He ◽  
...  

Silkworm is an economically important insect that synthetizes silk proteins for silk production in silk gland, and silk gland cells undergo endoreplication during larval period. Transcription factor Myc is essential for cell growth and proliferation. Although silkworm Myc gene has been identified previously, its biological functions in silkworm silk gland are still largely unknown. In this study, we examined whether enhanced Myc expression in silk gland could facilitate cell growth and silk production. Based on a transgenic approach, Myc was driven by the promoter of the fibroin heavy chain (FibH) gene to be successfully overexpressed in posterior silk gland. Enhanced Myc expression in the PSG elevated FibH expression by about 20% compared to the control, and also increased the weight and shell rate of the cocoon shell. Further investigation confirmed that Myc overexpression increased nucleus size and DNA content of the PSG cells by promoting the transcription of the genes involved in DNA replication. Therefore, we conclude that enhanced Myc expression promotes DNA replication and silk protein expression in endoreplicating silk gland cells, which subsequently raises silk yield.


2021 ◽  
Vol 202 ◽  
pp. 109537
Author(s):  
Chen Wu ◽  
Satoshi Egawa ◽  
Teruyoshi Kanno ◽  
Hiroki Kurita ◽  
Zhenjin Wang ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 429
Author(s):  
Mahdi Yonesi ◽  
Mario Garcia-Nieto ◽  
Gustavo V. Guinea ◽  
Fivos Panetsos ◽  
José Pérez-Rigueiro ◽  
...  

Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer’s disease, Parkinson’s disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.


2021 ◽  
Author(s):  
Kai Song ◽  
Yejing Wang ◽  
Wenjie Dong ◽  
Zhenzhen Li ◽  
Huawei He ◽  
...  

AbstractSilkworm silk is one of the best natural protein fibers spun by the silkworm at ambient temperature and pressure using aqueous silk protein solution. It is a great challenge to reproduce high-performance artificial fibers comparable to natural silk by bionics for the incomplete understanding of silkworm spinning mechanism, especially the structure and assembly of natural silk fibroin (NSF) in the silk gland. Here, we studied the structure and assembly of NSF with the assistance of amphipol and digitonin. Our results showed NSFs were present as nanofibrils primarily composed of random coils in the silk gland. Metal ions were vital for the formation of NSF nanofibrils. The successive decrease in pH from posterior silk gland (PSG) to anterior silk gland (ASG) resulted in a gradual increase in NSF hydrophobicity. NSF nanofibrils were randomly arranged from PSG to ASG-1, and then self-assembled into herringbone-like patterns near the spinneret (ASG-2) ready for silkworm spinning. Our study reveals the mechanism by which silkworms cleverly utilize metal ions and pH gradient in the silk gland to drive the programmed self-assembly of NSF from disordered nanofibrils to anisotropic liquid crystalline spinning dope (herringbone-like patterns) for silkworm spinning, thus providing novel insights into silkworm/spider spinning mechanism and bionic creation of high-performance fibers.


2021 ◽  
Vol 12 ◽  
pp. 190-202
Author(s):  
Sandra Senyo Fometu ◽  
Guohua Wu ◽  
Lin Ma ◽  
Joan Shine Davids

The production of high-quality silkworm silk is of importance in sericulture in addition to the production of biomass, silk proteins, and animal feed. The distinctive properties of nanomaterials have the potential to improve the development of various sectors including medicine, cosmetics, and agriculture. The application of nanotechnology in sericulture not only improves the survival rate of the silkworm, promotes the growth and development of silkworm, but also improves the quality of silk fiber. Despite the positive contributions of nanomaterials, there are a few concerns regarding the safety of their application to the environment, in humans, and in experimental models. Some studies have shown that some nanomaterials exhibit toxicity to tissues and organs of the silkworm, while other nanomaterials exhibit therapeutic properties. This review summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture.


2021 ◽  
Vol 22 (4) ◽  
pp. 1513
Author(s):  
Shuo Zhao ◽  
Xiaogang Ye ◽  
Meiyu Wu ◽  
Jinghua Ruan ◽  
Xiaoxiao Wang ◽  
...  

This paper explores the structures of exogenous protein molecules that can effectively improve the mechanical properties of silkworm silk. Several transgenic vectors fused with the silkworm fibroin light chain and type 3 repeats in different multiples of the ampullate dragline silk protein 1 (MaSp1) from black widow spider with different lengths of the polyalanine motifs were constructed for this study. Transgenic silkworms were successfully obtained by piggyBac-mediated microinjection. Molecular detection showed that foreign proteins were successfully secreted and contained within the cocoon shells. According to the prediction of PONDR® VSL2 and PONDR® VL-XT, the type 3 repeats and the polyalanine motif of the MaSp1 protein were amorphous. The results of FTIR analysis showed that the content of β-sheets in the silk of transgenic silkworms engineered with transgenic vectors with additional polyalanine was significantly higher than that of wild-type silkworm silk. Additionally, silk with a higher β-sheet content had better fracture strength and Young’s modulus. The mechanical properties of silk with longer chains of exogenous proteins were improved. In general, our results provide theoretical guidance and technical support for the large-scale production of excellent bionic silk.


2021 ◽  
Vol 22 (2) ◽  
pp. 373-381
Author(s):  
Shan Du ◽  
Weitao Zhou ◽  
Xing Jin ◽  
Yimin Zhang ◽  
Xiangxiang Chen ◽  
...  

2020 ◽  
Vol 6 (12) ◽  
pp. 6853-6863
Author(s):  
Matthew H. Clegg ◽  
Thomas I. Harris ◽  
Xiaoli Zhang ◽  
Jacob T. Barney ◽  
Justin A. Jones ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonio Abel Lozano-Pérez ◽  
Ana Pagán ◽  
Vladimir Zhurov ◽  
Stephen D. Hudson ◽  
Jeffrey L. Hutter ◽  
...  

Abstract Spider mites constitute an assemblage of well-known pests in agriculture, but are less known for their ability to spin silk of nanoscale diameters and high Young’s moduli. Here, we characterize silk of the gorse spider mite Tetranychus lintearius, which produces copious amounts of silk with nano-dimensions. We determined biophysical characteristics of the silk fibres and manufactured nanoparticles and biofilm derived from native silk. We determined silk structure using attenuated total reflectance Fourier transform infrared spectroscopy, and characterized silk nanoparticles using field emission scanning electron microscopy. Comparative studies using T. lintearius and silkworm silk nanoparticles and biofilm demonstrated that spider mite silk supports mammalian cell growth in vitro and that fluorescently labelled nanoparticles can enter cell cytoplasm. The potential for cytocompatibility demonstrated by this study, together with the prospect of recombinant silk production, opens a new avenue for biomedical application of this little-known silk.


Sign in / Sign up

Export Citation Format

Share Document