scholarly journals Crystal structure of human Acinus RNA recognition motif domain

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5163 ◽  
Author(s):  
Humberto Fernandes ◽  
Honorata Czapinska ◽  
Katarzyna Grudziaz ◽  
Janusz M. Bujnicki ◽  
Martyna Nowacka

Acinus is an abundant nuclear protein involved in apoptosis and splicing. It has been implicated in inducing apoptotic chromatin condensation and DNA fragmentation during programmed cell death. Acinus undergoes activation by proteolytic cleavage that produces a truncated p17 form that comprises only the RNA recognition motif (RRM) domain. We have determined the crystal structure of the human Acinus RRM domain (AcRRM) at 1.65 Å resolution. It shows a classical four-stranded antiparallel β-sheet fold with two flanking α-helices and an additional, non-classical α-helix at the C-terminus, which harbors the caspase-3 target sequence that is cleaved during Acinus activation. In the structure, the C-terminal α-helix partially occludes the potential ligand binding surface of the β-sheet and hypothetically shields it from non-sequence specific interactions with RNA. Based on the comparison with other RRM-RNA complex structures, it is likely that the C-terminal α-helix changes its conformation with respect to the RRM core in order to enable RNA binding by Acinus.

2011 ◽  
Vol 287 (3) ◽  
pp. 2130-2143 ◽  
Author(s):  
Chiara Pastore ◽  
Irini Topalidou ◽  
Farhad Forouhar ◽  
Amy C. Yan ◽  
Matthew Levy ◽  
...  

Author(s):  
Katherine Coburn ◽  
Zephan Melville ◽  
Ehson Aligholizadeh ◽  
Braden M. Roth ◽  
Kristen M. Varney ◽  
...  

The heterogeneous ribonucleoprotein A18 (hnRNP A18) is upregulated in hypoxic regions of various solid tumors and promotes tumor growthviathe coordination of mRNA transcripts associated with pro-survival genes. Thus, hnRNP A18 represents an important therapeutic target in tumor cells. Presented here is the first X-ray crystal structure to be reported for the RNA-recognition motif of hnRNP A18. By comparing this structure with those of homologous RNA-binding proteins (i.e.hnRNP A1), three residues on one face of an antiparallel β-sheet (Arg48, Phe50 and Phe52) and one residue in an unstructured loop (Arg41) were identified as likely to be involved in protein–nucleic acid interactions. This structure helps to serve as a foundation for biophysical studies of this RNA-binding protein and structure-based drug-design efforts for targeting hnRNP A18 in cancer, such as malignant melanoma, where hnRNP A18 levels are elevated and contribute to disease progression.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Yinjiao Zhao ◽  
Ya Du ◽  
Qinglan Ge ◽  
Fang Yan ◽  
Shu Wei

Summary The Dazl (deleted in azoospermia-like) gene encodes an RNA-binding protein containing an RNA recognition motif (RRM) and a DAZ motif. Dazl is essential for gametogenesis in vertebrates. In this study, we report the cloning of Dazl cDNA from Cynops cyanurus. Ccdazl mRNA showed a germline-specific expression pattern as expected. Ccdazl expression gradually decreased during oogenesis, suggesting that it may be involved in oocyte development. Phylogenetic analysis revealed that the Ccdazl protein shares conserved motifs/domains with Dazl proteins from other species. Cloning of Ccdazl provides a new tool to carry out comparative studies of germ cell development in amphibians.


1997 ◽  
Vol 110 (15) ◽  
pp. 1741-1750 ◽  
Author(s):  
H. Zinszner ◽  
J. Sok ◽  
D. Immanuel ◽  
Y. Yin ◽  
D. Ron

TLS, the product of a gene commonly translocated in liposarcomas (TLS), is prototypical of a newly identified class of nuclear proteins that contain a C-terminal domain with a distinct RNA recognition motif (RRM) surrounded by Arg-Gly-Gly (RGG) repeats. Its unique N terminus serves as an essential transforming domain for a number of fusion oncoproteins in human sarcomas and leukemias. In this study we use an in vivo UV crosslinking procedure to probe the interactions of TLS with RNA. TLS is found to bind RNA in vivo and the association of TLS with RNA is rapidly diminished by treating cells with transcriptional inhibitors. This suggests that the species bound by TLS turns over rapidly. Surprisingly, the RRM was found to be dispensable for RNA binding by TLS in vivo, suggesting that at any one time most of the interactions between TLS and RNA in the cell are not sequence specific. Analysis of inter specific heterokaryons formed between human and mouse or Xenopus cells revealed that TLS engages in rapid nucleocytoplasmic shuttling, a finding confirmed by the ability of anti-TLS antibodies to trap TLS when injected into the cytoplasm of HeLa cells. Cellular fractionation experiments suggest that TLS binds to RNA in both the nucleus and cytoplasm and support the hypothesis that TLS functions as a heterogeneous ribonuclear protein (hnRNP)-like chaperone of RNA. These findings are discussed in the context of the role altered forms of TLS play in cellular transformation.


Author(s):  
Marianna Teplova ◽  
Thalia A. Farazi ◽  
Thomas Tuschl ◽  
Dinshaw J. Patel

AbstractRNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutations in vivo.


2016 ◽  
Vol 113 (47) ◽  
pp. E7526-E7534 ◽  
Author(s):  
George J. Xu ◽  
Ami A. Shah ◽  
Mamie Z. Li ◽  
Qikai Xu ◽  
Antony Rosen ◽  
...  

Scleroderma is a chronic autoimmune rheumatic disease associated with widespread tissue fibrosis and vasculopathy. Approximately two-thirds of all patients with scleroderma present with three dominant autoantibody subsets. Here, we used a pair of complementary high-throughput methods for antibody epitope discovery to examine patients with scleroderma with or without known autoantibody specificities. We identified a specificity for the minor spliceosome complex containing RNA Binding Region (RNP1, RNA recognition motif) Containing 3 (RNPC3) that is found in patients with scleroderma without known specificities and is absent in unrelated autoimmune diseases. We found strong evidence for both intra- and intermolecular epitope spreading in patients with RNA polymerase III (POLR3) and the minor spliceosome specificities. Our results demonstrate the utility of these technologies in rapidly identifying antibodies that can serve as biomarkers of disease subsets in the evolving precision medicine era.


1994 ◽  
Vol 14 (7) ◽  
pp. 4662-4670 ◽  
Author(s):  
J M Romac ◽  
D H Graff ◽  
J D Keene

Expression of the recombinant human U1-70K protein in COS cells resulted in its rapid transport to the nucleus, even when binding to U1 RNA was debilitated. Deletion analysis of the U1-70K protein revealed the existence of two segments of the protein which were independently capable of nuclear localization. One nuclear localization signal (NLS) was mapped within the U1 RNA-binding domain and consists of two typically separated but interdependent elements. The major element of this NLS resides in structural loop 5 between the beta 4 strand and the alpha 2 helix of the folded RNA recognition motif. The C-terminal half of the U1-70K protein which was capable of nuclear entry contains two arginine-rich regions, which suggests the existence of a second NLS. Site-directed mutagenesis of the RNA recognition motif NLS demonstrated that the U1-70K protein can be transported independently of U1 RNA and that its association with the U1 small nuclear ribonucleoprotein particle can occur in the nucleus.


Sign in / Sign up

Export Citation Format

Share Document