scholarly journals Mitochondrial genomes organization in alloplasmic lines of sunflower (Helianthus annuusL.) with various types of cytoplasmic male sterility

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5266 ◽  
Author(s):  
Maksim S. Makarenko ◽  
Igor V. Kornienko ◽  
Kirill V. Azarin ◽  
Alexander V. Usatov ◽  
Maria D. Logacheva ◽  
...  

BackgroundCytoplasmic male sterility (CMS) is a common phenotype in higher plants, that is often associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. Investigation of the CMS phenomenon promotes understanding of fundamental issues of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuusL.). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization.MethodsThe NGS sequencing,de novoassembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred.ResultsThe mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11,852 bp inversion, 4,732 bp insertion, 451 bp deletion and 18 variant sites. In the mtDNA of HA89 (PET2) CMS line we determined 27.5 kb and 106.5 kb translocations, 711 bp and 3,780 bp deletions, as well as, 5,050 bp and 15,885 bp insertions. There are also 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line.DiscussionThe observed mitochondrial reorganizations in PET1 resulted in only one new open reading frame formation (orfH522), and PET2 mtDNA rearrangements led to the elimination oforf777, duplication ofatp6gene and appearance of four new ORFs with transcription activity specific for the HA89 (PET2) CMS line—orf645,orf2565,orf228andorf285.Orf228andorf285are theatp9chimeric ORFs, containing transmembrane domains and possibly may impact on mitochondrial membrane potential. Soorf228andorf285may be the cause for the appearance of the PET2 CMS phenotype, while the contribution of other mtDNA reorganizations in CMS formation is negligible.

2018 ◽  
Author(s):  
Maksim Makarenko ◽  
Igor Kornienko ◽  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maria Logacheva ◽  
...  

Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, 451 bp deletion and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 77 kb translocation, 711 bp and 3780 bp deletions, as well as 1558 bp, 5050 bp, 14330 bp insertions were determined. There are also revealed 83 polymorphic sites sites in the PET2 mitochondrial genome, as compared with the fertile line Discussion. Among the revealed rearrangements the 1558 bp insertion resulted in new open reading frames formation - orf228 and orf246. The orf228 and orf246 could be the main reason for the development of PET2 CMS phenotype, whereas the role of other mtDNA reorganizations in CMS formation is negligible.


2018 ◽  
Author(s):  
Maksim Makarenko ◽  
Igor Kornienko ◽  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maria Logacheva ◽  
...  

Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 5050 bp and 5.9 kb insertions, as well as 0.95 kb and 3.8 kb deletions, were determined. There are also revealed 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line. Discussion. Among the revealed rearrangements the 5.9 kb insertion results in putative orf1053 – coxI-atp6 chimeric protein, which could be the main reason for CMS phenotype development, whereas the role of other mtDNA reorganizations in CMS formation is negligible.


2018 ◽  
Author(s):  
Maksim Makarenko ◽  
Igor Kornienko ◽  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maria Logacheva ◽  
...  

Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, 451 bp deletion and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 77 kb translocation, 711 bp and 3780 bp deletions, as well as 1558 bp, 5050 bp, 14330 bp insertions were determined. There are also revealed 83 polymorphic sites sites in the PET2 mitochondrial genome, as compared with the fertile line Discussion. Among the revealed rearrangements the 1558 bp insertion resulted in new open reading frames formation - orf228 and orf246. The orf228 and orf246 could be the main reason for the development of PET2 CMS phenotype, whereas the role of other mtDNA reorganizations in CMS formation is negligible.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 590
Author(s):  
Zhuo Jin ◽  
Jeonghwan Seo ◽  
Backki Kim ◽  
Seung Young Lee ◽  
Hee-Jong Koh

Tetep-cytoplasmic male sterility (CMS) was developed through successive backcrosses between subspecies indica and japonica in rice (Oryza sativa L.), which showed abnormal anther dehiscence phenotypes. Whole genome sequencing and de novo assembly of the mitochondrial genome identified the chimeric gene orf312, which possesses a transmembrane domain and overlaps with two mitotype-specific sequences (MSSs) that are unique to the Tetep-CMS line. The encoded peptide of orf312 was toxic to Escherichia coli and inhibited cell growth compared to the control under isopropyl-β-D-1-thiogalactopyranoside (IPTG) induction. The peptide of orf312 contains COX11-interaction domains, which are thought to be a main functional domain for WA352c in the wild abortive (WA-CMS) line of rice. A QTL for Rf-Tetep (restorer-of-fertility gene(s) originating from Tetep) was identified on chromosome 10. In this region, several restorer genes, Rf1a, Rf1b, and Rf4, have previously been reported. Collectively, the interactions of orf312, a candidate gene for Tetep-CMS, and Rf-Tetep, a restorer QTL, confer male sterility and fertility restoration, respectively, which enables a hybrid rice breeding system. Further studies on orf312 and isolation of Rf-Tetep will help to identify the underlying molecular mechanism of mitochondrial ORFs with the COX11-interaction domains.


2019 ◽  
Vol 70 (3) ◽  
pp. 204 ◽  
Author(s):  
Qingsong Ba ◽  
Lanlan Zhang ◽  
Guiping Li ◽  
Gaisheng Zhang ◽  
Hongzhan Liu ◽  
...  

K-Type cytoplasmic male sterility (K-CMS) plays an important role in breeding hybrid wheat. This study was designed to investigate the association of sucrose metabolism with K-CMS in wheat (Triticum aestivum L.) anthers at the binucleate stage. Levels of sucrose in the anthers of the K-CMS line remained higher than in the fertile line, but glucose and fructose contents in the anthers of the K-CMS line were dramatically lower than in the fertile line. Compared with the fertile line, the activities of cell-wall-bound invertase (CWIN), neutral invertase and vacuolar invertase (VIN) were significantly reduced. Quantitative real-time polymerase chain reaction analyses showed that the expression levels of one CWIN gene (IVR1), one VIN gene (IVR5) and a sucrose transporter gene (TaSUT1) were significantly downregulated in K-CMS anthers. Furthermore, western blot confirmed that the protein expression level of IVR1 was higher in sterile anthers than in male fertile anthers. Thus, it appears that the accumulation of sucrose in K-CMS anthers might involve a decrease in activity and a reduction in content of invertase. In conclusion, the results suggest that an inability to metabolise incoming sucrose to hexoses may be involved in the K-CMS pollen-developmental lesion.


Sign in / Sign up

Export Citation Format

Share Document