Altered sucrose metabolism and gene regulation in wheat (Triticum aestivum) K-type cytoplasmic male sterility

2019 ◽  
Vol 70 (3) ◽  
pp. 204 ◽  
Author(s):  
Qingsong Ba ◽  
Lanlan Zhang ◽  
Guiping Li ◽  
Gaisheng Zhang ◽  
Hongzhan Liu ◽  
...  

K-Type cytoplasmic male sterility (K-CMS) plays an important role in breeding hybrid wheat. This study was designed to investigate the association of sucrose metabolism with K-CMS in wheat (Triticum aestivum L.) anthers at the binucleate stage. Levels of sucrose in the anthers of the K-CMS line remained higher than in the fertile line, but glucose and fructose contents in the anthers of the K-CMS line were dramatically lower than in the fertile line. Compared with the fertile line, the activities of cell-wall-bound invertase (CWIN), neutral invertase and vacuolar invertase (VIN) were significantly reduced. Quantitative real-time polymerase chain reaction analyses showed that the expression levels of one CWIN gene (IVR1), one VIN gene (IVR5) and a sucrose transporter gene (TaSUT1) were significantly downregulated in K-CMS anthers. Furthermore, western blot confirmed that the protein expression level of IVR1 was higher in sterile anthers than in male fertile anthers. Thus, it appears that the accumulation of sucrose in K-CMS anthers might involve a decrease in activity and a reduction in content of invertase. In conclusion, the results suggest that an inability to metabolise incoming sucrose to hexoses may be involved in the K-CMS pollen-developmental lesion.

2019 ◽  
Vol 20 (24) ◽  
pp. 6252 ◽  
Author(s):  
Junchang Li ◽  
Jing Zhang ◽  
Huijuan Li ◽  
Hao Niu ◽  
Qiaoqiao Xu ◽  
...  

Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.


2018 ◽  
Author(s):  
Maksim Makarenko ◽  
Igor Kornienko ◽  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maria Logacheva ◽  
...  

Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, 451 bp deletion and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 77 kb translocation, 711 bp and 3780 bp deletions, as well as 1558 bp, 5050 bp, 14330 bp insertions were determined. There are also revealed 83 polymorphic sites sites in the PET2 mitochondrial genome, as compared with the fertile line Discussion. Among the revealed rearrangements the 1558 bp insertion resulted in new open reading frames formation - orf228 and orf246. The orf228 and orf246 could be the main reason for the development of PET2 CMS phenotype, whereas the role of other mtDNA reorganizations in CMS formation is negligible.


2018 ◽  
Author(s):  
Maksim Makarenko ◽  
Igor Kornienko ◽  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maria Logacheva ◽  
...  

Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 5050 bp and 5.9 kb insertions, as well as 0.95 kb and 3.8 kb deletions, were determined. There are also revealed 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line. Discussion. Among the revealed rearrangements the 5.9 kb insertion results in putative orf1053 – coxI-atp6 chimeric protein, which could be the main reason for CMS phenotype development, whereas the role of other mtDNA reorganizations in CMS formation is negligible.


2018 ◽  
Author(s):  
Maksim Makarenko ◽  
Igor Kornienko ◽  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maria Logacheva ◽  
...  

Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, 451 bp deletion and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 77 kb translocation, 711 bp and 3780 bp deletions, as well as 1558 bp, 5050 bp, 14330 bp insertions were determined. There are also revealed 83 polymorphic sites sites in the PET2 mitochondrial genome, as compared with the fertile line Discussion. Among the revealed rearrangements the 1558 bp insertion resulted in new open reading frames formation - orf228 and orf246. The orf228 and orf246 could be the main reason for the development of PET2 CMS phenotype, whereas the role of other mtDNA reorganizations in CMS formation is negligible.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5266 ◽  
Author(s):  
Maksim S. Makarenko ◽  
Igor V. Kornienko ◽  
Kirill V. Azarin ◽  
Alexander V. Usatov ◽  
Maria D. Logacheva ◽  
...  

BackgroundCytoplasmic male sterility (CMS) is a common phenotype in higher plants, that is often associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. Investigation of the CMS phenomenon promotes understanding of fundamental issues of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuusL.). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization.MethodsThe NGS sequencing,de novoassembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred.ResultsThe mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11,852 bp inversion, 4,732 bp insertion, 451 bp deletion and 18 variant sites. In the mtDNA of HA89 (PET2) CMS line we determined 27.5 kb and 106.5 kb translocations, 711 bp and 3,780 bp deletions, as well as, 5,050 bp and 15,885 bp insertions. There are also 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line.DiscussionThe observed mitochondrial reorganizations in PET1 resulted in only one new open reading frame formation (orfH522), and PET2 mtDNA rearrangements led to the elimination oforf777, duplication ofatp6gene and appearance of four new ORFs with transcription activity specific for the HA89 (PET2) CMS line—orf645,orf2565,orf228andorf285.Orf228andorf285are theatp9chimeric ORFs, containing transmembrane domains and possibly may impact on mitochondrial membrane potential. Soorf228andorf285may be the cause for the appearance of the PET2 CMS phenotype, while the contribution of other mtDNA reorganizations in CMS formation is negligible.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ayumu Takatsuka ◽  
Tomohiko Kazama ◽  
Kinya Toriyama

Abstract Background Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. Findings A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. Conclusions The orf312 gene is a promising candidate for CMS-associated gene in TAA.


Genetika ◽  
2013 ◽  
Vol 45 (1) ◽  
pp. 145-151
Author(s):  
Jelena Vancetovic ◽  
Dragana Ignjatovic-Micic ◽  
Ana Nikolic ◽  
Sofija Bozinovic ◽  
Ksenija Markovic ◽  
...  

In gene-bank maize collection of Maize Research Institute Zemun Polje (MRI) two samples with untypical mtDNA profile for cytoplasmic male sterility (cms) were identified. These two samples showed typical multiplex polymerase chain reaction (PCR) band for cms-S, but also an additional band of unknown nature. It is assumed that the additional band is the result of a rearrangement of the two mitochondrial episomes characteristic for the cms-S in maize or a duplication of the part of cms-S mitochondrial genome. Additional field and laboratory experiments are necessary in the further lightening of this phenomenon.


2012 ◽  
Vol 48 (No. 3) ◽  
pp. 139-142 ◽  
Author(s):  
L. Havlíčková ◽  
V. Čurn ◽  
E. Jozová ◽  
V. Kučera ◽  
M. Vyvadilová ◽  
...  

Until now in Europe has not been cultivated any hybrid cultivar of oilseed rape based on the Shaan 2A cytoplasmic male sterility (CMS), a widely used CMS system in China. The aim of Czech breeders now is to produce new, improved cultivars of rapeseed based on this CMS system. Sterile Shaan 2A CMS line (S; rf/rf), its corresponding maintainers (N; rf/rf) and fertility restorers (S; Rf/Rf) were analyzed on molecular level for the presence of functional CMS cytoplasm. Two new primer pairs covering CMS-associated gene (so called orf224-1) present in Shaan 2A CMS line were developed and selection capability of the developed primers was successfully evaluated. These primers can be used for early selection of plants with functional Shaan 2A CMS system in breeding programmes.


Sign in / Sign up

Export Citation Format

Share Document