scholarly journals Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring

Author(s):  
Jun-Young Park ◽  
Jun-Sik Shin ◽  
Jong-Bin Won ◽  
Jong-Woong Park ◽  
Min-Yong Park
2021 ◽  
Vol 22 ◽  
pp. 48
Author(s):  
Yujie Li ◽  
Ming Zhang ◽  
Yu Zhu

This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5092
Author(s):  
Kiyoung Kim ◽  
Hoon Sohn

In this paper, we propose a dynamic displacement estimation method for large-scale civil infrastructures based on a two-stage Kalman filter and modified heuristic drift reduction method. When measuring displacement at large-scale infrastructures, a non-contact displacement sensor is placed on a limited number of spots such as foundations of the structures, and the sensor must have a very long measurement distance (typically longer than 100 m). RTK-GNSS, therefore, has been widely used in displacement measurement on civil infrastructures. However, RTK-GNSS has a low sampling frequency of 10–20 Hz and often suffers from its low stability due to the number of satellites and the surrounding environment. The proposed method combines data from an RTK-GNSS receiver and an accelerometer to estimate the dynamic displacement of the structure with higher precision and accuracy than those of RTK-GNSS and 100 Hz sampling frequency. In the proposed method, a heuristic drift reduction method estimates displacement with better accuracy employing a low-pass-filtered acceleration measurement by an accelerometer and a displacement measurement by an RTK-GNSS receiver. Then, the displacement estimated by the heuristic drift reduction method, the velocity measured by a single GNSS receiver, and the acceleration measured by the accelerometer are combined in a two-stage Kalman filter to estimate the dynamic displacement. The effectiveness of the proposed dynamic displacement estimation method was validated through three field application tests at Yeongjong Grand Bridge in Korea, San Francisco–Oakland Bay Bridge in California, and Qingfeng Bridge in China. In the field tests, the root-mean-square error of RTK-GNSS displacement measurement reduces by 55–78 percent after applying the proposed method.


Author(s):  
Yuxiang Cai

Multi source fusion of data collected by various sensors to realize accurate perception is the key basic technology of the Internet of things. At present, there are many problems in the fusion of various kinds of data collected by sensors, such as more noise and more null values. In this paper, the fuzzy neural network algorithm is proposed to establish the model, combined with the Delphi method and the null value estimation method based on the prediction value to construct the data fusion system. This method has rich application scenarios in the construction of IOT system in the field of power and energy.


2013 ◽  
Vol 753-755 ◽  
pp. 2117-2120 ◽  
Author(s):  
Tian Lai Xu

The accuracy of multi-sensor navigational data fusion by federated Kalman filter will be reduced in condition that the systems dynamics model is nonlinear and the noise statistical properties are unknown. To address this problem, a federated Interacting Multiple Model-Unscented Kalman Filteing (IMM-UKF) algorithm is presented. The UKF is a nonlinear estimation method which can achieve the accuracy at least to the second-order. The IMM estimation algorithm is one of the cost-effective adaptive estimation algorithm for systems involving parametric changes. The combination of IMM with UKF could deal with the problem of nonlinear filtering with uncertain noise. Simulation results show that the method can improve the accuracy of INS/GPS/odometer integrated navigation.


Sign in / Sign up

Export Citation Format

Share Document