A Rare Case of ETV6/MECOM Rearrangement in Therapy-Related Acute Myeloid Leukemia with t(3;12) and Monosomy 7

2017 ◽  
Vol 63 (02/2017) ◽  
Author(s):  
Young Kim ◽  
John Yang ◽  
Yujin Han ◽  
Suekyeung Kim ◽  
Hyung-seok Yang ◽  
...  
2019 ◽  
Vol 12 ◽  
pp. 100175
Author(s):  
Meghan McAlice ◽  
Munaza Gohar ◽  
Ahmed Alshaban ◽  
Attilio Orazi ◽  
Vijay Tonk ◽  
...  

2006 ◽  
Vol 169 (2) ◽  
pp. 181-183 ◽  
Author(s):  
Ronald Feitosa Pinheiro ◽  
Maria de Lourdes L.F. Chauffaille ◽  
Maria Regina Régis Silva

2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Duygu Mert ◽  
Gülşen Iskender ◽  
Fazilet Duygu ◽  
Alparslan Merdin ◽  
Mehmet Sinan Dal ◽  
...  

Invasive pulmonary aspergillosis is most commonly seen in immunocompromised patients. Besides, skin lesions may also develop due to invasive aspergillosis in those patients. A 49-year-old male patient was diagnosed with acute myeloid leukemia. The patient developed bullous and zosteriform lesions on the skin after the 21st day of hospitalization. The skin biopsy showed hyphae. Disseminated skin aspergillosis was diagnosed to the patient. Voricanazole treatment was initiated. The patient was discharged once the lesions started to disappear.


2019 ◽  
pp. 1-4
Author(s):  
Huu Hanh Lê ◽  
Jean-Philippe Lengelé ◽  
Marie Henin ◽  
Sébastien Toffoli ◽  
Philippe Mineur

2013 ◽  
Vol 37 ◽  
pp. S88-S89
Author(s):  
H. Muramatsu ◽  
Y. Xu ◽  
K. Yoshida ◽  
Y. Okuno ◽  
H. Sakaguchi ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2567-2567
Author(s):  
Bin Yin ◽  
Jessica Walrath ◽  
Kevin M. Shannon ◽  
Margaret R. Wallace ◽  
David A. Largaespada

Abstract Loss of the NF1 (Neurofibromatosis Type 1) gene, a tumor suppressor, can cause myeloid diseases juvenile myelomonocytic leukemia (JMML), monosomy 7 syndrome (Mo7), and acute myeloid leukemia (AML). However, using knockout mice, it has been shown that loss of Nf1 expression in hematopoietic cells, by itself, does not lead to aggressive leukemia resulting instead in a relatively indolent myeloproliferative disease. Murine Leukemia Virus (MuLV) insertional mutagenesis in BXH-2 mice provides a model to dissect genetic alterations in AML. We have profiled proviral insertions in BXH-2 AML which do or do not have corresponding loss-of-function of Nf1. 197 PIS (68 from 25 Nf1-wild type AML and 129 from 55 Nf1-defective AML) were isolated. Nf1-defective AML were obtained from BXH-2 AMLs with proviral insertions into the endogenous Nf1 gene and AML that developed in leukemia-prone, heterozygous Nf1+/− BXH-2 mice. These latter AMLs develop faster than wild-type BXH-2 AMLs and show Nf1 gene LOH or proviral insertion into the wild-type Nf1 allele. These analyses led to 37 common proviral insertion sites (CIS), 13 of which have not been reported previously. Several of the CIS (including Lmo2, Cmyb, Meis1, Bcl11a, Spred2, Def8, Edg3, Hoxa9, and a novel Krab domain-zinc finger gene) were found repeatedly among the Nf1-defective group of AML. Expression of most could be detected in human JMML and CMML by RT-PCR, including BCL11A. Importantly, among the CIS we detected, PIS targeting Bcl11a were significantly enriched (p < 0.05) in Nf1-defective leukemia. Retroviral expression vectors for Bcl11a have been constructed and transduced into an immortalized Nf1-/- null myeloblast cell line. Growth assays show that the cumulative cell number of FACS-sorted Bcl11a-Nf1-/- cells increase by ~2.5 fold that of controls. BXH-2 provides a powerful genetic system to dissect Nf1-cooperating genetic events in tumorigenesis. Mutations at several novel common integration sites could be involved in development or progression of leukemia with NF1 gene inactivation. This work was supported by the National Cancer Institute (U01-CA84221-05) and the American Cancer Society (RPG LIB-106632) to DAL and by National Cancer Institute (R01 CA92095) and U.S. Dept. of Defense (DAMD17-97-1-7339) to MRW.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1802-1802
Author(s):  
Brian V Balgobind ◽  
Sanne Lugthart ◽  
Iris H.I.M. Hollink ◽  
Susan T.J.C.M. Arentsen-Peters ◽  
Elisabeth R van Wering ◽  
...  

Abstract The EVI1 (ecotropic virus integration-1) gene plays an important role in hematopoiesis especially in megakaryocyte development. The MDS1 gene is located upstream of EVI1, and its function is currently unknown. Normally the MDS1/EVI1 intergenic splice variant is co-expressed with EVI1. In adult acute myeloid leukemia (AML) overexpression of EVI1 (EVI1+) can be found in patients with chromosome 3q26-rearrangements. Often, these patients do not co-express MDS1/EVI1. Recently high EVI1 expression was also discovered in a separate subgroup of patients that did not have 3q26-rearrangements. Occasionally, they did not show overexpression of MDS1/EVI1. In these patients cryptic inversions of chromosome 3 were identified with fluorescence in situ hybridization (FISH). Of interest, EVI1+ was found to be an independent poor prognostic marker in adult AML (Lugthart et al, Blood 2008). In pediatric AML, 3q26-rearrangements are rare and the role of EVI1 is unknown. In this study, we investigated the frequency and clinical relevance of EVI1+ in pediatric AML. EVI1 expression was analyzed in 233 pediatric AML patients, of whom microarray gene expression profiling data were available. EVI1+ was found in 25 pediatric AML patients (11%), and confirmed with real-time quantitative PCR. This included 13/49 (26%) patients with MLL-rearranged AML: 5/22 (23%) cases with t(9;11); and all (n=4) cases with t(6;11). Moreover, EVI1+ was found in 4/7 (57%) cases with AML M7; in 2/3 (66%) cases with AML M6; in both cases with monosomy 7; in 1/43 (2%) cases with normal cytogenetics; in 2 patients with random cytogenetics, and in 1 patient with a cytogenetic failure. EVI1+ was not found in the t(8;21), inv(16) and t(15;17) subgroups. 3/25 EVI1+ patients lacked the MDS/EVI1 transcript, but no cryptic 3q26-rearrangements were detected with FISH. Molecular analysis showed that one patient had a CEBPα mutation; one patient had an FLT3-ITD; and 3 patients showed a mutation in the RAS oncogene. EVI+ was not correlated with sex or white blood cell count. However, the frequency in children younger than 10 years old was twice as high when compared to older children (14% vs 7%, p=0.12). Survival analysis was restricted to the subset of patients who were treated using uniform DCOG and BFM treatment protocols (n=204). In this cohort, EVI1+ patients had a worse 5-years event-free survival (pEFS) compared to patients without EVI1+ (30 vs. 43%, p=0.02). However, multivariate analysis, including cytogenetics (favorable [t(8;21, inv(16), t(15;17)] vs. other), FLT3-ITD, age and WBC, showed that EVI1+ was not an independent prognostic factor for survival. Moreover, within the unfavorable/normal cytogenetic subgroup, there was no difference in outcome between patients with and without EVI1+. We conclude that EVI1+ is found in ~10% of pediatric AML, and highly correlated with specific unfavorable cytogenetic (MLL-rearrangements) and morphologic (FAB M6/7) subtypes. In contrast to adult AML, no 3q26-rearrangements or cryptic inversions were found, and EVI1+ was not an independent prognostic factor. This difference in prognostic relevance may be due to differences in treatment. Alternatively, these results may indicate that EVI1 plays a different role in disease biology between adult and pediatric AML. This is at least suggested by the lack of 3q26 aberrations in pediatric AML.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Kohei Kasahara ◽  
Masahiro Onozawa ◽  
Naohiro Miyashita ◽  
Emi Yokohata ◽  
Miho Yoshida ◽  
...  

We report a case of acute myeloid leukemia (AML) with two cytogenetically unrelated clones. The patient was a 45-year-old male who was diagnosed with acute monoblastic leukemia (AMoL). Initial G-band analysis showed 51,XY,+6,+8,inv(9)(p12q13)c,+11,+13,+19[12]/52,idem,+Y[8], but G-band analysis after induction therapy showed 45,XY,-7,inv(9)(p12q13)c[19]/46,XY,inv(9)(p12q13)c[1]. Retrospective FISH analysis revealed a cryptic monosomy 7 clone in the initial AML sample. The clone with multiple trisomies was eliminated after induction therapy and never recurred, but a clone with monosomy 7 was still detected in myelodysplastic marrow with a normal blast percentage. Both clones were successfully eliminated after related peripheral blood stem cell transplantation, but the patient died of relapsed AML with monosomy 7. We concluded that one clone was de novo AMoL with chromosome 6, 8, 11, 13, and 19 trisomy and that the other was acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) with chromosome 7 monosomy showing different responses to chemotherapy. Simultaneous onset of cytogenetically unrelated hematological malignancies that each have a different disease status is a rare phenomenon but is important to diagnose for a correct understanding of the disease status and for establishing an appropriate treatment strategy.


Sign in / Sign up

Export Citation Format

Share Document