scholarly journals Evaluation of Maximum Principal Stress, Von Mises Stress, and Deformation on Surrounding Mandibular Bone During Insertion of an Implant: A Three-Dimensional Finite Element Study

Cureus ◽  
2020 ◽  
Author(s):  
Bhavan Chand Yemineni ◽  
Jaideep Mahendra ◽  
Jigeesh Nasina ◽  
Little Mahendra ◽  
Lakshmi Shivasubramanian ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3798
Author(s):  
Jin-Young Choi ◽  
Min-Jung Kim ◽  
Seong-Hun Kim ◽  
Kyu-Rhim Chung ◽  
Gerald Nelson

The orthodontic miniscrew is driven into bone in a clockwise direction. Counter-clockwise rotational force applied to the implanted miniscrew can degrade the stability. The purpose of this three-dimensional finite element study was to figure out the effect of shifting the miniscrew head hole position from the long axis. Two miniscrew models were developed, one with the head hole at the long axis and the other with an eccentric hole position. One degree of counter-clockwise rotation was applied to both groups, and the maximum Von-Mises stress and moment was measured under various wire insertion angles from −60° to +60°. All Von-Mises stress and moments increased with an increase in rotational angle or wire insertion angle. The increasing slope of moment in the eccentric hole group was significantly higher than that in the centric hole group. Although the maximum Von-Mises stress was higher in the eccentric hole group, the distribution of stress was not very different from the centric hole group. As the positive wire insertion angles generated a higher moment under a counter-clockwise rotational force, it is recommended to place the head hole considering the implanting direction of the miniscrew. Clinically, multidirectional and higher forces can be applied to the miniscrew with an eccentric head hole position.


2020 ◽  
Vol 28 (6) ◽  
pp. 603-613 ◽  
Author(s):  
Efe Can Sivrikaya ◽  
Mehmet Sami Guler ◽  
Muhammed Latif Bekci

BACKGROUND: Zirconia has become a popular biomaterial in dental implant systems because of its biocompatible and aesthetic properties. However, this material is more fragile than titanium so its use is limited. OBJECTIVES: The aim of this study was to compare the stresses on morse taper implant systems under parafunctional loading in different abutment materials using three-dimensional finite element analysis (3D FEA). METHODS: Four different variations were modelled. The models were created according to abutment materials (zirconia or titanium) and loading (1000 MPa vertical or oblique on abutments). The placement of the implants (diameter, 5.0 × 15 mm) were mandibular right first molar. RESULTS: In zirconia abutment models, von Mises stress (VMS) values of implants and abutments were decreased. Maximum and minimum principal stresses and VMS values increased in oblique loading. VMS values were highest in the connection level of the conical abutments in all models. CONCLUSIONS: Using conical zirconia abutments decreases von Mises stress values in abutments and implants. However, these values may exceed the pathological limits in bruxism patients. Therefore, microfractures may be related to the level of the abutment.


2013 ◽  
Vol 24 (6) ◽  
pp. 635-641 ◽  
Author(s):  
Sandra Lucia Dantas de Moraes ◽  
Fellippo Ramos Verri ◽  
Joel Ferreira Santiago Junior ◽  
Daniel Augusto de Faria Almeida ◽  
Caroline Cantieri de Mello ◽  
...  

The purpose of this study was to assess the influence of the crown height of external hexagon implants on the displacement and distribution of stress to the implant/bone system, using the three-dimensional finite element method. The InVesalius and Rhinoceros 4.0 softwares were used to generate the bone model by computed tomography. Each model was composed of a bone block with one implant (3.75x10.0 mm) with external hexagon connections and crowns with 10 mm, 12.5 mm and 15 mm in height. A 200 N axial and a 100 N oblique (45°) load were applied. The models were solved by the NeiNastran 9.0 and Femap 10.0 softwares to obtain the results that were visualized by maps of displacement, von Mises stress (crown/implant) and maximum principal stress (bone). The crown height under axial load did not influence the stress displacement and concentration, while the oblique loading increased these factors. The highest stress was observed in the neck of the implant screw on the side opposite to the loading. This stress was also transferred to the crown/platform/bone interface. The results of this study suggest that the increase in crown height enhanced stress concentration at the implant/bone tissue and increased displacement in the bone tissue, mainly under oblique loading.


2013 ◽  
Vol 07 (04) ◽  
pp. 484-491 ◽  
Author(s):  
Wagner Moreira ◽  
Caio Hermann ◽  
Jucélio Tomás Pereira ◽  
Jean Anacleto Balbinoti ◽  
Rodrigo Tiossi

ABSTRACT Objective: The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Materials and Methods: Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). Results: The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Conclusions: Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.


Author(s):  
Mateus Favero Barra Grande ◽  
Marcelo Lucchesi Teixeira ◽  
André Antônio Pelegrine ◽  
Guilherme Da Rocha Scalzer Lopes ◽  
Julio Ferraz Campos ◽  
...  

The effect of the different dental implants positioning region on the stress performance of the implant-supported prosthesis is not yet clear. This study evaluated the dental treatment with six dental implants in three different models and three different occlusal loading conditions, in terms of the biomechanical response of implants, prosthetic screw and maxilla, using three-dimensional finite element analysis. The finite element models were modelled containing external hexagon implants, as well as a Cobalt-Chromium superstructure. Three types of loads were applied: in the area of ​​the central incisors, first premolar and in the second molars. For the finite element simulations, the von-Mises stress peaks in the implant and in the surrounding cortical bone were analyzed. All recorded results reported higher values ​​for the implant-supported prosthesis in group C compared to the groups A and B. The highest stress values, ​​regardless the evaluated model, was in the prosthesis in group C and in screws, the smallest were in group A.


2013 ◽  
Vol 405-408 ◽  
pp. 1139-1143
Author(s):  
Wei Su ◽  
Ying Sun ◽  
Shi Qing Huang ◽  
Ren Huai Liu

Using ANSYS parametric design language, a three-dimensional finite element model is developed to analyze the stress distribution and the strength of the mega columns for XRL West Kowloon Terminus. The detailed von Mises stress distribution in each column, vertical stiffener plates and the diaphragm plates is obtained. From the analysis, the phenomenon of stress concentration is obvious in both upper and lower diaphragm plates. The local value of von Mises stress in them is higher than the yield stress value, which must be avoided by more detailed local structural design.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2666
Author(s):  
Jae-Hyun Lee ◽  
Ho Yeol Jang ◽  
Su Young Lee

The present study was designed to compare the stress distributions in two restoration types of implants and the surrounding bone. The first restoration type was a conventional cement-retained zirconia crown, and the second was a novel cementless screw-retained zirconia crown with a base abutment. A three-dimensional finite element method was used to model the implants, restorations, and supporting bone. A comparative study of the two implants was performed under two masticatory loads: a vertical load of 100 N and a 30-degree oblique load of 100 N. Under both loading conditions, the maximum von Mises stress and strain values in the implant and supporting bone were higher in the conventional cement-retained restoration model than in the cementless screw-retained model. In terms of stress distribution, the cementless screw-retained zirconia crown with base abutment may be considered a superior restoration option compared to the conventional cement-retained zirconia crown.


2012 ◽  
Vol 197 ◽  
pp. 93-97 ◽  
Author(s):  
Wen Zhi Zhao ◽  
Hong Jiang ◽  
Sheng Wei He ◽  
Lu Zhang ◽  
Xue Gang Sun

A three-dimensional finite element model is developed to simulate the integrated system which consists of the fractured bone (femur), bone plate and stabilization screw by using the ANSYS software. The stress and strain distribution of the integrated system is investigated. The numerical model simulates a patient’s imperfect walking under the assumption that the fractured bone is not able to support any load and all body weight was burden by bone plate in fractured bone section. The simulation results reveal that the maximum Von Mises stress on bone plate is much less than yield strength and fatigue strength of Titanium alloy.


2020 ◽  
Vol 46 (1) ◽  
pp. 3-12
Author(s):  
Ji-Hyeon Oh ◽  
Young-Seong Kim ◽  
Joong Yeon Lim ◽  
Byung-Ho Choi

The all-on-4 concept, which is used to rehabilitate edentulous patients, can present with mechanical complications such as screw loosening and fracture. The purpose of this study was to evaluate the stress patterns induced in the prosthetic screws by the different prosthetic screw and abutment designs in the all-on-4 concept using finite element analysis. Von Mises stress values on 6 groups of each screw type, including short and narrow screw, short abutment; short and wide screw, short abutment; long and wide screw, short abutment; short and narrow screw, long abutment; short and wide screw, long abutment; and long and wide screw, long abutment, were compared under a cantilever loading of 200 N that was applied on the farther posterior to the position of the connection between the distal implant and the metal framework. Posterior prosthetic screws showed higher stress values than anterior prosthetic screws. The stress values in posterior prosthetic screws decreased as the length and diameter increased. In conclusion, the long and wide screw design offers advantages in stress distribution when compared with the short and narrow design.


2015 ◽  
Vol 41 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Gianpaolo Sannino

The aim of this work was to study the biomechanical behavior of an All-on-4 implant-supported prosthesis through a finite element analysis comparing 3 different tilt degrees of the distal implants. Three-dimensional finite element models of an edentulous maxilla restored with a prosthesis supported by 4 implants were reconstructed to carry out the analysis. Three distinct configurations, corresponding to 3 tilt degrees of the distal implants (15°, 30°, and 45°) were subjected to 4 loading simulations. The von Mises stresses generated around the implants were localized and quantified for comparison. Negligible differences in von Mises stress values were found in the comparison of the 15° and 30° models. From a stress-level viewpoint, the 45° model was revealed to be the most critical for peri-implant bone. In all the loading simulations, the maximum stress values were always found at the neck of the distal implants. The stress in the distal implants increased in the apical direction as the tilt degree increased. The stress location and distribution patterns were very similar among the evaluated models. The increase in the tilt degree of the distal implants was proportional to the increase in stress concentration. The 45° model induced higher stress values at the bone-implant interface, especially in the distal aspect, than the other 2 models analyzed.


Sign in / Sign up

Export Citation Format

Share Document