scholarly journals The Repeat Heat Treatment Behavior of Double Remelted Fe-Co Ultra-high Strength Steel. - Part. 1 Microstructure Control

2012 ◽  
Vol 32 (1) ◽  
pp. 32-37
Author(s):  
Bo-Hee Yoon ◽  
Kyoung-Tae Park ◽  
Tae-Hyuk Lee ◽  
Jae-Hoon Kim ◽  
Hong-Kyu Kim ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1033
Author(s):  
Xiao Ouyang ◽  
Zhiqiang Zhang ◽  
Hongjie Jia ◽  
Mingwen Ren ◽  
Yaping Sun

Insufficient strength of welding spots is a common problem in the hot stamping process of ultra-high strength steel patchwork blanks (UHSSP). In this paper, the welding spots of 22MnB5 boron steel with thicknesses of 1.2 and 1.5 mm were austenitized and then air-cooled to 650–850 °C for high temperature tensile shear tests and high temperature cross-tension tests, respectively. To study the mechanical properties of the welding spots at room temperature after heat treatment, the austenitized welding spots were quenched in cold water to room temperature, and microhardness tests and microstructure observations were performed. The results indicated that compared to the original welding spots, the heat-affected softening zone disappeared after heat treatment, and the hardness values of the fusion zone, heat-affected zone and base material were basically the same, at about 500 HV. After heat treatment, the welding spots were mainly martensite. With the increase in deformation temperature, the peak loads of the tensile shear and the cross tension of the welding spots decreased. At 750 °C, the peak loads of the welding spots decreased less, energy absorption was larger, and the welding spots had the comprehensive mechanical properties of strength and ductility.


2021 ◽  
Vol 1035 ◽  
pp. 410-417
Author(s):  
De Gui Liu ◽  
Fu Long Chen ◽  
Hai Bao Wu ◽  
Ji Zhen Li ◽  
Jian Fei Wang

D406A steel is a medium-carbon low-alloy steel, which has excellent comprehensive mechanical properties. It is widely used in the production of missiles and rocket barrels. In this paper, the spinning forming limit test and the intermediate heat treatment process of ultra-high-strength steel were used to explore the effect of spinning process and heat treatment on the properties of spinning parts. The research results showed that the reduction amount of the material made the material thinning rate approach the limit thinning rate. The final blank wall thickness was reduced from 15 mm to 3.0 mm when the cracking occurred. It was calculated that the material's power spinning limit thinning rate was 80%. The ferrite matrix after spinning showed a streamline distribution characteristic perpendicular to the thinning direction, and the precipitated carbides were uniformly distributed on the surface of the matrix, which had the characteristics of deformation and extension along the streamline. After the heat treatment, the structure of the spinning parts changed continuously. When the structure was quenched and tempered, the martensitic structure can be obtained, and the tempered martensitic structure was smaller. Furthermore a test piece for ultra-high-strength steel spinning technology has been developed, and the solutions discussed for flanging defects in the actual spinning process, and test data for the actual production of ultra-high-strength steel spinning parts accumulated.


Alloy Digest ◽  
1962 ◽  
Vol 11 (5) ◽  

Abstract Crucible D6 is a low alloy ultra-high strength steel developed for aircraft-missile applications and primarily designed for use in the 260,000-290,000 psi tensile strength range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-129. Producer or source: Crucible Steel Company of America.


Sign in / Sign up

Export Citation Format

Share Document