Analysis of Nonlinear Rayleigh Surface Wave Fields Generated by Comb Transducers

2020 ◽  
Vol 40 (1) ◽  
pp. 24-32
Author(s):  
Hyunjo Jeong ◽  
Shuzeng Zhang
1985 ◽  
Vol 52 (3) ◽  
pp. 664-668 ◽  
Author(s):  
A. K. Gautesen

We study the two-dimensional, steady-state problem of the scattering of waves in a homogeneous, isotropic, linear-elastic quarter space. We derive decoupled equations for the Fourier transforms of the normal and tangential displacements on the free surfaces. For incidence of a Rayleigh surface wave, we plot the amplitudes and phases of the surface waves reflected and transmitted by the corner. These curves were obtained numerically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


2020 ◽  
Vol 790 ◽  
pp. 228548
Author(s):  
Zhixiang Yao ◽  
Sandvol Eric ◽  
Chunyong Wang ◽  
Zhifeng Ding ◽  
Yongshun Chen

2006 ◽  
Vol 326-328 ◽  
pp. 701-704 ◽  
Author(s):  
Wen Wu Wang ◽  
Sung Jin Song ◽  
Hak Joon Kim ◽  
Dong Ju Yang ◽  
Sung Duk Kwon

Chemical vapor deposit (CVD) diamond coating layer is expected to extend the lifetime of mechanical parts that are used severely abrasive conditions. However, one of the most severe problems is that the delamination between the CVD diamond coating layer and the silicon substrate occurs frequently due to large difference in the material properties. Therefore, the nondestructive evaluation of adhesive property of CVD diamond coating layer is needed. To address such a need, back-scattered Rayleigh surface wave is currently applied. However, the interpretation of the acquired signal is not easy at all. To take care of such a difficulty, we proposed the time trace angular scan (TTAS) plot and the frequency spectrum angular scan (FSAS) plot that can make possible of the systematic interpretation of the back-scattered signals from the diamond coating layer. In this paper, the concept of the TTAS and FSAS plots and the experimental results presented to demonstrate the effectiveness of the proposed approach.


2017 ◽  
Vol 139 ◽  
pp. 35-53 ◽  
Author(s):  
Edwin J.F. Drost ◽  
Ryan J. Lowe ◽  
Greg N. Ivey ◽  
Nicole L. Jones ◽  
Christine A. Péquignet

Sign in / Sign up

Export Citation Format

Share Document