scholarly journals Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers

2016 ◽  
Vol 28 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Sun Hee Kim ◽  
Kong Soo Yom ◽  
Yong Hwan Kim ◽  
Sung Mo Choi
2020 ◽  
Vol 154 ◽  
pp. 106873
Author(s):  
Yu-Hang Wang ◽  
Qi Tang ◽  
Mei-Ni Su ◽  
Ji-Ke Tan ◽  
Wei-Yong Wang ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 618-623
Author(s):  
Jaksada Thumrongvut ◽  
Apichat Tipcharoen ◽  
Kamonwan Prathumwong

This paper presents experimental studies on the post-fire performance of concrete-filled steel tube (CSFT) columns under uni-axial load. The structural responses and axial load capacity of CSFT columns after exposure to elevated temperatures are investigated and discussed. All of the specimens are 750 mm in height, the nominal cross-section of the specimen is 150 mm x 150 mm, and have cylinder compressive strength of 18 MPa. The primary test parameters to be measured during the uni-axial compression test are wall thicknesses of the square tube (3.0 mm, 4.5 mm and 6.0 mm) and three different exposure to elevated temperatures (400°C, 600°C and 800°C). The results showed that the load-axial shortening relationship of the CSFT columns have a linear elastic response up to 80-90% of axial load capacity. After the axial load capacity is reached, the load-axial shortening curves are rarely becoming a nonlinear manner. It is also shown that the axial load capacity and ductility of the post-fire test columns are decreased significantly compared to the columns at ambient temperature, depending mainly on the elevated temperature. In addition, by comparing the axial load capacity of the test results with those obtained from the ACI design equation, the comparison results indicate that calculation formula in ACI code unconservative predicts the axial load capacity of the CSFT columns after exposure to elevated temperatures. Finally, the residual strength ratios are modified to both strength of concrete and steel tube under ambient temperature, and analyzed to evaluate the effect of post-fire behavior on the axial capacity of CFST columns.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1853-1867
Author(s):  
Yong Ye ◽  
Yang Liu ◽  
Zi-Xiong Guo ◽  
Rachel Chicchi

2021 ◽  
pp. 136943322110093
Author(s):  
Zhenzhen Liu ◽  
Yiyan Lu ◽  
Shan Li ◽  
Jiancong Liao

A comprehensive study of the shear characteristics of steel fiber reinforced recycled concrete-filled steel tube (SRCFST) columns is conducted. 50 CFST stub columns are tested with the variables of steel tube diameter-thickness ratio ( D/t), shear span-to-depth ratio (λ), axial compression ratio ( n), and concrete mix. Two types of cements, three recycled aggregate percentages, three water-cement ratios, and three steel fiber contents are considered in design of concrete mixes. The experimental results show that SRCFST columns present the coincident shear behavior of the ordinary CFST columns. As λ is increased, shear resistance shows a downtrend, while the flexural strength presents an increasing trend. Imposing axial compression or thickening steel tube contributes to an adequate safety margin in plastic period. Based on the contributions superposition method, a predicted model of the shear capacity of SRCFST columns is proposed in consideration of shear-span ratio, axial compression, and self-stress.


Sign in / Sign up

Export Citation Format

Share Document