scholarly journals Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model

Author(s):  
Changhyeon Kim ◽  
Wonjin Sung
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Chen ◽  
Yaolin Zhu ◽  
Yong Fang

In this paper, an extension spatial channel model (SCM) for vehicle-to-vehicle (V2V) communications is proposed. To efficiently illustrate the real-world scenarios and reflect nonstationary properties of V2V channels, all effective scattering objects are subdivided into three categories of clusters according to the relative position of clusters. Besides, a birth-death process is introduced to model the appearance and disappearance of clusters on both the array and time axes. Their impacts on V2V channels are investigated via statistical properties including correlation functions. Additionally, a closed-form expression of channel impulse response (CIR) is derived from an extension SCM and cluster-based models. Furthermore, the spatial and frequency statistical properties of the reference model are thoroughly investigated. Finally, simulation results show that the proposed SCM V2V model is in close agreement with previously reported results, thereby validating the accuracy and effectiveness of the proposed model.


Author(s):  
Mohammad Rizk Assaf ◽  
Abdel-Nasser Assimi

In this article, the authors investigate the enhanced two stage MMSE (TS-MMSE) equalizer in bit-interleaved coded FBMC/OQAM system which gives a tradeoff between complexity and performance, since error correcting codes limits error propagation, so this allows the equalizer to remove not only ICI but also ISI in the second stage. The proposed equalizer has shown less design complexity compared to the other MMSE equalizers. The obtained results show that the probability of error is improved where SNR gain reaches 2 dB measured at BER compared with ICI cancellation for different types of modulation schemes and ITU Vehicular B channel model. Some simulation results are provided to illustrate the effectiveness of the proposed equalizer.


2012 ◽  
Vol 60 (12) ◽  
pp. 5966-5977 ◽  
Author(s):  
Stephan Jaeckel ◽  
Kai Borner ◽  
Lars Thiele ◽  
Volker Jungnickel

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Chen ◽  
Yong Fang ◽  
Weidong Xiang ◽  
Liang Zhou

In this paper, an extension of spatial channel model (SCM) for vehicle-to-vehicle (V2V) communication channel in roadside scattering environment is investigated for the first time theoretically and by simulations. Subsequently, to efficiently describe the roadside scattering environment and reflect the nonstationary properties of V2V channels, the proposed SCM V2V model divides the scattering objects into three categories of clusters according to the location of effective scatterers by introducing critical distance. We derive general expressions for the most important statistical properties of V2V channels, such as channel impulse response, power spectral density, angular power density, autocorrelation function, and Doppler spread of the proposed model. The impact of vehicle speed, traffic density, and angle of departure, angle of arrival, and other statistical performances on the V2V channel model is thoroughly discussed. Numerical simulation results are presented to validate the accuracy and effectiveness of the proposed model.


Author(s):  
Evangelos N. Papasotiriou ◽  
Joonas Kokkoniemi ◽  
Alexandros-Apostolos A. Boulogeorgos ◽  
Janne Lehtomaki ◽  
Angeliki Alexiou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document