The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction

Author(s):  
Yong Hoon Jeong ◽  
Jae Sam Yang
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


Boreas ◽  
2021 ◽  
Author(s):  
Zoltán Püspöki ◽  
Philip Leonard Gibbard ◽  
Annamária Nádor ◽  
Edit Thamó‐Bozsó ◽  
Pál Sümegi ◽  
...  

2021 ◽  
Vol 270 ◽  
pp. 116285
Author(s):  
Lewei Zeng ◽  
Hai Guo ◽  
Xiaopu Lyu ◽  
Beining Zhou ◽  
Zhenhao Ling ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. 295-302
Author(s):  
Chuandong Zhu ◽  
Wei Zhan ◽  
Jinzhao Liu ◽  
Ming Chen

AbstractThe mixture effect of the long-term variations is a main challenge in single channel singular spectrum analysis (SSA) for the reconstruction of the annual signal from GRACE data. In this paper, a nonlinear long-term variations deduction method is used to improve the accuracy of annual signal reconstructed from GRACE data using SSA. Our method can identify and eliminate the nonlinear long-term variations of the equivalent water height time series recovered from GRACE. Therefore the mixture effect of the long-term variations can be avoided in the annual modes of SSA. For the global terrestrial water recovered from GRACE, the peak to peak value of the annual signal is between 1.4 cm and 126.9 cm, with an average of 11.7 cm. After the long-term and the annual term have been deducted, the standard deviation of residual time series is between 0.9 cm and 9.9 cm, with an average of 2.1 cm. Compared with the traditional least squares fitting method, our method can reflect the dynamic change of the annual signal in global terrestrial water, more accurately with an uncertainty of between 0.3 cm and 2.9 cm.


2017 ◽  
Vol 598 ◽  
pp. 657-668 ◽  
Author(s):  
R. Sánchez-Montero ◽  
C. Alén-Cordero ◽  
P.L. López-Espí ◽  
J.M. Rigelsford ◽  
F. Aguilera-Benavente ◽  
...  

Solar Physics ◽  
1994 ◽  
Vol 152 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Judit M. Pap ◽  
Richard C. Willson ◽  
Claus Fr�hlich ◽  
Richard F. Donnelly ◽  
Larry Puga

Sign in / Sign up

Export Citation Format

Share Document