scholarly journals Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review

2016 ◽  
Vol 25 (3) ◽  
pp. 169-193 ◽  
Author(s):  
Min-Cheol Kim ◽  
Soohwan Jung ◽  
Sangwon Yoon ◽  
Rae-Yoon Jeong ◽  
Cheol Woo Song ◽  
...  
2019 ◽  
Vol 52 (10) ◽  
pp. 4133-4145
Author(s):  
Peng Li ◽  
Mei-feng Cai ◽  
Sheng-jun Miao ◽  
Qi-feng Guo

2020 ◽  
Author(s):  
Revathy M. Parameswaran ◽  
Ingi Th. Bjarnason ◽  
Freysteinn Sigmundsson

<p>The Reykjanes Peninsula (RP) is a transtensional plate boundary in southwest Iceland that marks the transition of the Mid-Atlantic Ridge (MAR) from the offshore divergent Reykjanes Ridge (RR) in the west to the South Iceland Seismic Zone (SISZ) in the east. The seismicity here trends ~N80°E in central RP and bends to ~N45°E at its western tip as it joins RR. Seismic surveys, geodetic studies, and recent GPS-based kinematic models indicate that the seismic zone is a collection of strike-slip and normal faults (e.g., Keiding et al., 2008). Meanwhile, the tectonic processes in the region also manifest as NE-SW trending volcanic fissures and normal faults, and N-S oriented dextral faults (e.g., Clifton and Kattenhorn, 2006). The largest of these fissure and normal-fault systems in RP is the Krísuvík-Trölladyngja volcanic system, which is a high-energy geothermal zone. The seismicity here predominantly manifests RP’s transtentional tectonics; however, also hosts triggered events such as those following the 17 June 2000 Mw6.5 earthquake in the SISZ (Árnadottir et al., 2004) ~80 km east of Krísuvík. Stress inversions of microearthquakes from 1997-2006 in the RP indicate that the current stress state is mostly strike-slip with increased normal component to the west, indicating that the seismicity is driven by plate diverging motion (Keiding et al., 2009). However, the geothermal system in Krísuvík is a potential secondary source for triggered seismicity and deformation. This study uses seismic and geodetic data to evaluate the activity in the Krísuvík-Trölladyngja volcanic system. The seismic data is used to identify specific areas of focused activity and evaluate variations in the stress field associated with plate motion and/or geothermal activity over space and time. The data used, within the time period 2007-2016, was collected by the the South Icelandic Lowland (SIL) seismic network operated and managed by the Iceland Meterological Office (IMO). Furthermore, variations in seismicity are compared to crustal deformation observed with TerraSAR-X images from 2009-2019. Crustal changes in the Krísuvík area are quantified to develop a model for corresponding deformation sources. These changes are then correlated with the stress-field variations determined with seismic analysis.</p>


2020 ◽  
Author(s):  
Sven Schippkus ◽  
Dimitri Zigone ◽  
Götz Bokelmann ◽  
AlpArray Working Group

<p>Gaining insight into the regional stress field and deformation in the crust is challenging. As we cannot measure these directly, we rely on proxy measurements and numerical modelling to infer their orientation. For the Alpine-Pannonian-Carpathian junction, only a limited number of studies exist that provide such insights. They are based on either the interpretation of sparse and point-wise measurements of local stress-field orientations or on numerical modelling that aims to satisfy tectonic and geological constraints.</p><p> </p><p>We infer seismic azimuthal anisotropy that relates to the orientation of the regional stress-field and crustal deformation from ambient-noise-derived Rayleigh waves in the region. This approach provides a spatially broad and independent measurement that complements previous studies. We use Rayleigh-wave group-velocity residuals after isotropic inversion at 5s and 20s center period, which are sensitive to crustal structure at different depths. They allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths (5s), fast orientations in the region are N/S to NNE/SSW, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress field. At greater depths (20s), fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the expected direction of aligned crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.</p>


2012 ◽  
Vol 120 (6) ◽  
pp. 625-646 ◽  
Author(s):  
Sung Won Kim ◽  
Sanghoon Kwon ◽  
In-Chang Ryu ◽  
Youn-Joong Jeong ◽  
Sung-Ja Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document