Numerical Analysis for Simulating the Road Environment Condition in the Full-scale Particulate Matter Testing Facility

2021 ◽  
Vol 23 (4) ◽  
pp. 31-36
Author(s):  
Hee Mun Park
2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

Author(s):  
M. Mongiardini ◽  
J. D. Reid

Numerical simulations allow engineers in roadside safety to investigate the safety of retrofit designs minimizing or, in some cases, avoiding the high costs related to the execution of full-scale experimental tests. This paper describes the numerical investigation made to assess the performance of a roadside safety barrier when relocated behind the break point of a 3H:1V slope, found on a Mechanically Stabilized Earth (MSE) system. A safe barrier relocation in the slope would allow reducing the installation width of the MSE system by an equivalent amount, thus decreasing the overall construction costs. The dynamics of a pick-up truck impacting the relocated barrier and the system deformation were simulated in detail using the explicit non-linear dynamic finite element code LS-DYNA. The model was initially calibrated and subsequently validated against results from a previous full-scale crash test with the barrier placed at the slope break point. After a sensitivity analysis regarding the role of suspension failure and tire deflation on the vehicle stability, the system performance was assessed when it was relocated into the slope. Two different configurations were considered, differing for the height of the rail respect to the road surface and the corresponding post embedment into the soil. Conclusions and recommendations were drawn based on the results obtained from the numerical analysis.


2014 ◽  
Vol 501-504 ◽  
pp. 2132-2137

Removed due to plagiarism. The original was published by: Liu, Deng and Chu (eds) © 2008 Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg Geotechnical Engineering for Disaster Mitigation and Rehabilitation http://www.ftsl.itb.ac.id/kk/geotechnical_engineering/wp-content/uploads/2008/06/irsyam-165.pdf


Author(s):  
Daša Fullová ◽  
Dušan Jandačka ◽  
Daniela Ďurčanská ◽  
Adriana Eštoková ◽  
Jitka Hegrová

2021 ◽  
Vol 240 ◽  
pp. 109931
Author(s):  
Kwan-Woo Kim ◽  
Kwang-Jun Paik ◽  
Ju-Han Lee ◽  
Soon-Seok Song ◽  
Mehmet Atlar ◽  
...  

2018 ◽  
Vol 196 ◽  
pp. 04026
Author(s):  
Sergey Sannikov ◽  
Sergey Kuyukov ◽  
Alexey Zamyatin ◽  
Alexandr Zhigailov

The paper presents a complex method for increasing water resistance and reducing crack formation by using a prefabricated foundation of soil-cement slabs with surface processing with a hydrophobizing material on basis of organosilicon compounds. Theoretical, laboratory and full-scale experimental studies were made. Theoretical studies are based on the substantiation of the geometric parameters of the slab in order to exclude the probability of its destruction under its own weight during building and installation works. The result of the first stage of laboratory studies is the determination of the optimum composition of soil-cement mixture in order to achieve a grade of strength M20. At the second stage, the effectiveness of the influence of hydrophobizing materials "Tiprom U" and "Penetron-Admix" on water absorption and compressive strength of soil-cement was determined. The final stage of the research was a full-scale experiment. In the factory environment, soil-cement slabs were manufactured in metal forms. Based on the results of the research, conclusions about the effectiveness of this complex method were made. The use of soil-cement slabs allows reducing crack formation, as well as to work all year round due to manufacturing and surface treatment of slabs in the factory conditions.


2018 ◽  
Vol 219 ◽  
pp. 02012
Author(s):  
Dawid Bruski ◽  
Stanisław Burzyński ◽  
Jacek Chróścielewski ◽  
Łukasz Pachocki ◽  
Krzysztof Wilde ◽  
...  

Road safety barriers are used to increase safety in potentially dangerous places on the roads. They are designed and installed on the roads to prevent any vehicle from getting outside the travelled way or from entering the opposite lane of the road. Barriers, which are used on European roads, have to undergo full scale crash tests according to the EN 1317 standards. Nowadays as a supplement to real crash tests, numerical simulations are commonly used. The work concerns the influence of position of the post or its absence on the crashworthiness of the cable barrier based on numerical study results.


2009 ◽  
Vol 44 (12) ◽  
pp. 2430-2441 ◽  
Author(s):  
Girma T. Bitsuamlak ◽  
Arindam Gan Chowdhury ◽  
Dhawal Sambare

Author(s):  
Shintaro Watanabe ◽  
Kazuhiko Maekawa ◽  
Yasuyuki Tanaka ◽  
Akesi Koike ◽  
Yukiharu Yamasaki

The largest 3-dimensional vibration test facility is being constructed in Japan’s Hyogo Prefecture. The objective of this facility is to assist the investigation on the process of the collapsing phenomena of a full-scale structure in an earthquake. This facility has a large size shaking table (15 m × 20 m), with a payload of 12 MN. Actuators are connected to the shaking table via 3-D links. In order to reduce the distortion of accelaration wave form, low friction tribo-elements are employed in the actuators; a hydrostatic bearing for rod supports, a pressure balanced seal for pistons, a floating ring seal for 3-dimensional joints. Since these elements are large and heavily loaded, the deformation of them are relatively large compared to the oil film gap in the elements and make design difficult. The paper exhibits the tribological performance of the actuators and joints.


Sign in / Sign up

Export Citation Format

Share Document