scholarly journals N-WASP is an Important Protein for the Actin-Based Motility of Shigella flexneri in the Infected Epithelial Cells

1998 ◽  
Vol 51 (Supplement1) ◽  
pp. S63-S68 ◽  
Author(s):  
Toshihiko Suzuki ◽  
Chihiro Sasakawa
BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 272 ◽  
Author(s):  
Christina S Faherty ◽  
D Scott Merrell ◽  
Cristina Semino-Mora ◽  
Andre Dubois ◽  
Aishwarya V Ramaswamy ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Benjamin J. Koestler ◽  
Carolyn R. Fisher ◽  
Shelley M. Payne

ABSTRACTThe intracellular human pathogenShigella flexneriinvades the colon epithelium, replicates to high cell density within the host cell, and then spreads to adjacent epithelial cells. WhenS. flexnerigains access to the host cytosol, the bacteria metabolize host cytosolic carbon using glycolysis and mixed acid fermentation, producing formate as a by-product. We show thatS. flexneriinfection results in the accumulation of formate within the host cell. Loss of pyruvate formate lyase (PFL; ΔpflB), which converts pyruvate to acetyl coenzyme A (CoA) and formate, eliminatesS. flexneriformate production and reduces the ability ofS. flexnerito form plaques in epithelial cell monolayers. This defect in PFL does not decrease the intracellular growth rate ofS. flexneri; rather, it affects cell-to-cell spread. TheS. flexneriΔpflBmutant plaque defect is complemented by supplying exogenous formate; conversely, deletion of theS. flexneriformate dehydrogenase genefdnGincreases host cell formate accumulation andS. flexneriplaque size. Furthermore, exogenous formate increases plaque size of the wild-type (WT)S. flexneristrain and promotesS. flexnericell-to-cell spread. We also demonstrate that formate increases the expression ofS. flexnerivirulence genesicsAandipaJ. IntracellularS. flexneriicsAandipaJexpression is dependent on the presence of formate, andipaJexpression correlates withS. flexneriintracellular density during infection. Finally, consistent with elevatedipaJ, we show that formate altersS. flexneri-infected host interferon- and tumor necrosis factor (TNF)-stimulated gene expression. We propose thatShigella-derived formate is an intracellular signal that modulates virulence in response to bacterial metabolism.IMPORTANCEShigellais an intracellular pathogen that invades the human host cell cytosol and exploits intracellular nutrients for growth, enabling the bacterium to create its own metabolic niche. ForShigellato effectively invade and replicate within the host cytoplasm, it must sense and adapt to changing environmental conditions; however, the mechanisms and signals sensed byS. flexneriare largely unknown. We have found that the secretedShigellametabolism by-product formate regulatesShigellaintracellular virulence gene expression and its ability to spread among epithelial cells. We propose thatShigellasenses formate accumulation in the host cytosol as a way to determine intracellularShigelladensity and regulate secreted virulence factors accordingly, enabling spatiotemporal regulation of effectors important for dampening the host immune response.


2009 ◽  
Vol 77 (5) ◽  
pp. 1992-1999 ◽  
Author(s):  
Carolyn R. Fisher ◽  
Nicola M. L. L. Davies ◽  
Elizabeth E. Wyckoff ◽  
Zhengyu Feng ◽  
Edwin V. Oaks ◽  
...  

ABSTRACT The sit-encoded iron transport system is present within pathogenicity islands in all Shigella spp. and some pathogenic Escherichia coli strains. The islands contain numerous insertion elements and sequences with homology to bacteriophage genes. The Shigella flexneri sit genes can be lost as a result of deletion within the island. The formation of deletions was dependent upon RecA and occurred at relatively high frequency. This suggests that the sit region is inherently unstable, yet sit genes are maintained in all of the clinical isolates tested. Characterization of the sitABCD genes in S. flexneri indicates that they encode a ferrous iron transport system, although the genes are induced aerobically. The sit genes provide a competitive advantage to S. flexneri growing within epithelial cells, and a sitA mutant is outcompeted by the wild type in cultured epithelial cells. The Sit system is also required for virulence in a mouse lung model. The sitA mutant was able to infect the mice and induce a protective immune response but was avirulent compared to its wild-type parent strain.


2014 ◽  
Vol 82 (7) ◽  
pp. 2746-2755 ◽  
Author(s):  
E. A. Waligora ◽  
C. R. Fisher ◽  
N. J. Hanovice ◽  
A. Rodou ◽  
E. E. Wyckoff ◽  
...  

ABSTRACTShigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellularS. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkABandpykAFmutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway geneedaresulted in small plaques, but the doubleeda eddmutant formed normal-size plaques. This suggested that the plaque defect of theedamutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellularS. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-typeS. flexnerialso formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate ofS. flexneriin vitro, suggesting that it may be a preferred carbon source inside host cells.


Gut ◽  
2010 ◽  
Vol 60 (4) ◽  
pp. 473-484 ◽  
Author(s):  
M. Flamant ◽  
P. Aubert ◽  
M. Rolli-Derkinderen ◽  
A. Bourreille ◽  
M. R. Neunlist ◽  
...  

1996 ◽  
Vol 183 (3) ◽  
pp. 991-999 ◽  
Author(s):  
M Watarai ◽  
S Funato ◽  
C Sasakawa

Shigella is a genus of highly adapted bacterial pathogens that cause bacillary dysentery in humans. Bacteria reaching the colon invade intestinal epithelial cells by a process of bacterial-directed endocytosis mediated by the Ipa proteins: IpaB, IpaC, and IpaD of Shigella. The invasion of epithelial cells is thought to be a receptor-mediated phenomenon, although the cellular components of the host that interact with the Ipa proteins have not yet been identified. We report here that in a Shigella flexneri invasive system and Chinese hamster ovary (CHO) cell monolayers, the Ipa proteins were capable of interacting directly with alpha5beta1 integrin. The invasive capacity of S. flexneri for CHO cells increased as levels of alpha5beta1 integrin were elevated. When CHO cells were infected with S. flexneri, the tyrosine phosphorylation both of pp 125FAK, an integrin-regulated 125 K focal adhesion kinase, and of paxillin was stimulated. In contrast, an isogenic strain of S. flexneri that was defective in invasion owing to a mutation in its spa32 gene failed to induce such phosphorylation. Under in vitro and in vivo conditions, the released IpaB, IpaC, and IpaD proteins bound to alpha 5 beta 1 integrin in a manner different from that of soluble fibronectin but similar to that of the tissue form of fibronectin. At the site of attachment of S. flexneri to CHO cells, alpha5beta1 integrin converged with polymerization of actin. These data thus suggest that the capacity of Ipa proteins to interact with alpha5beta1 integrin may be an important Shigella factor in triggering the reorganization of actin cytoskeletons.


1999 ◽  
Vol 112 (13) ◽  
pp. 2069-2080 ◽  
Author(s):  
J. Mounier ◽  
V. Laurent ◽  
A. Hall ◽  
P. Fort ◽  
M.F. Carlier ◽  
...  

Shigella flexneri, an invasive bacterial pathogen, promotes formation of two cytoskeletal structures: the entry focus that mediates bacterial uptake into epithelial cells and the actin-comet tail that enables the bacteria to spread intracellularly. During the entry step, secretion of bacterial invasins causes a massive burst of subcortical actin polymerization leading the formation of localised membrane projections. Fusion of these membrane ruffles leads to bacterial internalization. Inside the cytoplasm, polar expression of the IcsA protein on the bacterial surface allows polymerization of actin filaments and their organization into an actin-comet tail leading to bacterial spread. The Rho family of small GTPases plays an essential role in the organization and regulation of cellular cytoskeletal structures (i.e. filopodia, lamellipodia, adherence plaques and intercellular junctions). We show here that induction of Shigella entry foci is controlled by the Cdc42, Rac and Rho GTPases, but not by RhoG. In contrast, actin-driven intracellular motility of Shigella does not require Rho GTPases. Therefore, Shigella appears to manipulate the epithelial cell cytoskeleton both by Rho GTPase-dependent and -independent processes.


2013 ◽  
Vol 81 (8) ◽  
pp. 3027-3034 ◽  
Author(s):  
Amandine Mathias ◽  
Stéphanie Longet ◽  
Blaise Corthésy

ABSTRACTShigella flexneri, by invading intestinal epithelial cells (IECs) and inducing inflammatory responses of the colonic mucosa, causes bacillary dysentery. Although M cells overlying Peyer's patches are commonly considered the primary site of entry ofS. flexneri, indirect evidence suggests that bacteria can also use IECs as a portal of entry to the lamina propria. Passive delivery of secretory IgA (SIgA), the major immunoglobulin secreted at mucosal surfaces, has been shown to protect rabbits from experimental shigellosis, but no information exists as to its molecular role in maintaining luminal epithelial integrity. We have established that the interaction of virulentS. flexneriwith the apical pole of a model intestinal epithelium consisting of polarized Caco-2 cell monolayers resulted in the progressive disruption of the tight junction network and actin depolymerization, eventually resulting in cell death. The lipopolysaccharide (LPS)-specific agglutinating SIgAC5 monoclonal antibody (MAb), but not monomeric IgAC5 or IgGC20 MAbs of the same specificity, achieved protective functions through combined mechanisms, including limitation of the interaction betweenS. flexneriand epithelial cells, maintenance of the tight junction seal, preservation of the cell morphology, reduction of NF-κB nuclear translocation, and inhibition of proinflammatory mediator secretion. Our results add to the understanding of the function of SIgA-mediated immune exclusion by identifying a mode of action whereby the formation of immune complexes translates into maintenance of the integrity of epithelial cells lining the mucosa. This novel mechanism of protection mediated by SIgA is important to extend the arsenal of effective strategies to fight againstS. flexnerimucosal invasion.


1999 ◽  
Vol 112 (13) ◽  
pp. 2059-2068 ◽  
Author(s):  
A. Skoudy ◽  
G.T. Nhieu ◽  
N. Mantis ◽  
M. Arpin ◽  
J. Mounier ◽  
...  

Shigella flexneri is an enteroinvasive bacterium responsible for bacillary dysentery in humans. Bacterial entry into epithelial cells is a crucial step for the establishment of the infection. It is characterized by a transient reorganization of the host cell cytoskeleton at the site of bacterial interaction with the cell membrane, which leads to bacterial engulfment by a macropinocytic process. We show in this study that the membrane-cytoskeleton linker, ezrin, a member of the ERM (ezrin, radixin, moesin) family, plays an active role in the process of Shigella uptake. Ezrin is highly enriched in cellular protrusions induced by the bacterium and is found in close association with the plasma membrane. In addition, Shigella entry is significantly reduced in cells transfected with a dominant negative allele of ezrin with entry foci showing much shorter cellular protrusions. These results indicate that ezrin not only acts as a membrane-cytoskeleton linker, but may also mediate extension of cellular projections in the presence of signals such as those elicited by invading microorganisms.


Sign in / Sign up

Export Citation Format

Share Document