scholarly journals Design and Implementation of a Multi-level Simulation Environment for WSN: Interoperation between an FPGA-based Sensor Node and a NS3

2016 ◽  
Vol 25 (4) ◽  
pp. 43-52
Author(s):  
Moon Gi Seok ◽  
Tag Gon Kim ◽  
Daejin Park
2021 ◽  
Author(s):  
Khushal Singh ◽  
Nanhay Singh

Abstract Internet of Things (IoT) is the domain of interest for the researchers at the present with the exponential growth in technology. Security in IoT is a prime factor, which highlights the need for authentication to tackle various attackers and hackers. Authentication is the process that uniquely identifies the incoming user and this paper develops an authentication protocol based on the chebyshev polynomial, hashing function, session password, and Encryption. The proposed authentication protocol is named as, proposed Elliptic, chebyshev, Session password, and Hash function (ECSH)-based multilevel authentication. For authenticating the incoming user, there are two phases, registration and authentication. In the registration phase, the user is registered with the server and Authentication center (AC), and the authentication follows, which is an eight-step criterion. The authentication is duly based on the scale factor of the user and server, session password, and verification messages. The authentication at the eight levels assures the security against various types of attacks and renders secure communication in IoT with minimal communication overhead and packet-loss. The performance of the method is analyzed using black-hole and Denial-of-service (DOS) attacks with 50 and 100 nodes in the simulation environment. The proposed ECSH-based multilevel authentication acquired the maximal detection rate, PDR, and QOS of 15.2%, 35.7895%, and 26.4623%, respectively in the presence of 50 nodes and DOS attacks, whereas the minimal delay of 135.922 ms is acquired in the presence of 100 nodes and DOS attacks.


2018 ◽  
Vol 7 (3) ◽  
pp. 1059
Author(s):  
Mustafa Fawzi Mohammed ◽  
Ali Husain Ahmad ◽  
AbdulRahim Thiab Humod

The most concerns in the inverter's design are about, how to make the output voltage of the inverter sinusoidal at the desired fundamental frequency with low total harmonic distortion (THD). This paper presents a design and implementation of single-phase five-level inverter which is powered by single dc source and based on T-type multi-level inverters construction. The proposed inverter is built mainly by six IGBTs and two diodes. The used modulation technique is based on using two triangular carriers at 2000 Hz frequency and shifted by phase opposition disposition (POD) method. The carriers are made slightly unbalanced with their amplitudes. The over-modulation method is also introduced in the design to get the lowest possible THD effect without using filters. The inverter is simulated by MATLAB SIMULINK, implemented practically, and tested with the help of LabVIEW software.  


Sign in / Sign up

Export Citation Format

Share Document