Impact of Citric Acid, Ascorbic Acid and Some Nutrients (Folifert, Potaqueen) on Fruit Yield and Quality of Washington Navel Orange Trees

2018 ◽  
Vol 4 (3) ◽  
pp. 1-13
Author(s):  
H El-Badawy ◽  
S El-Gioushy ◽  
M Baiea ◽  
A El-Khwaga
Author(s):  
A. A. EL- Khwaga ◽  
F. M. Abd El- Latif ◽  
M. H. M. Baiea ◽  
S. F. EL- Gioushy

This research was conducted during seasons 2018 & 2019 on nine-years-old Washington navel orange trees. These trees were grafted on Sour orange rootstock, planted at 5 x 5 meters apart, under surface irrigation conditions, in a private orchard at Manzala village, Toukh region, Qalubia Governorate, Egypt. The seven treatments were used for comparison as follows: T1-100% of chemical NPK (NPK fertilization program adopted at 5, 3 and 1 kg/tree from (NH4)2SO4, superphosphate and K2SO4, respectively) according to the Ministry of Agriculture Recommendation (Control or recommended doses RD). T2-RD+Calcium boron 2 cm3 /L; T3-RD+Calcium boron 3 cm3/L; T4-RD+Carpox-K 1g/L; T5-RD+Carpox-K 1.5g/L; T6-RD+Calcium boron 2 cm3 /L +Carpox-K 1g/L, and T7-RD+Calcium boron 3 cm3/L +Carpox-K 1.5g/L.  The main goal of this investigation was directed towards increasing Washington navel orange fruit quality. The obtained data revealed that all investigated treatments increased fruit quality parameters (physical and chemical properties). However, T7- RD + Calcium boron 3 cm3 /L + Carpox-K 1.5g/L was statistically superior. On the contrary, T1- Control or recommended doses (RD) ranked statistically the lowest treatment in this concern. From the obtained results, It can be concluded that the use of RD+ Calcium boron 3 cm3 / L + Carpox-K 1.5g / L or RD+ Calcium boron 2 cm3/ L + Carpox-K 1g / L could be safely recommended under similar environmental and horticultural practises adopted in this experiment.


2011 ◽  
Vol 68 (3) ◽  
pp. 369-375 ◽  
Author(s):  
José Antonio Quaggio ◽  
Dirceu Mattos Junior ◽  
Rodrigo Marcelli Boaretto

Fruit yield and quality of citrus trees (Citrus spp.) is markedly affected by potassium (K) fertilization. Potassium chloride is the major source of K, even though other sources are also available for agricultural use when crops are sensitive to chloride or where potential for accumulation of salts in soils exists. Only few studies addressed the effect of K sources on yield and quality of citrus fruits. Therefore, the present study was conducted to evaluate K2SO4 and KCl fertilizer sources at 0, 100, 200, and 300 kg ha-1 per year K2O on fruit yield and quality of 'Pêra' and 'Valencia' sweet orange trees in the field. The experiments were carried out in a 4 × 2 factorial design under randomized complete blocks, with four replicates from 2001 to 2004. Fruit yield increased with increased K fertilization. Nutrient rate for maximum economic yield of 'Pêra' was 200 kg ha-1 of K2O and for 'Valencia', 270 kg ha-1 of K2O. Differences were attributed to higher production and K exportation by fruits of 'Valencia'. Fruit mass also increased with increased K fertilization what decreased total soluble solids in juice, and which correlated with leaf K concentrations for 'Valencia' (r = 0.76; p < 0.05). Leaf Ca, Mg and B concentrations decreased with K rates. Additionally, leaf Cl increased up to 440 mg kg-1 with KCl rates, even though no negative effects occurred either on fruit yield or quality of trees.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 549
Author(s):  
Beppe Benedetto Consentino ◽  
Leo Sabatino ◽  
Rosario Paolo Mauro ◽  
Carlo Nicoletto ◽  
Claudio De Pasquale ◽  
...  

Vegetable landraces represent the main source of biodiversity in Sicily. Lagenaria siceraria is appreciated by Southern Mediterranean consumers for its immature fruits and young shoots. Plant-based biostimulants supply, such as seaweed extract (SwE), is a contemporary and green agricultural practice applied to ameliorate the yield and quality of vegetables. However, there are no studies concerning the effects of SwE on L. siceraria. The current study evaluated the effects of SwE foliar application (0 or 3 mL L−1) on five L. siceraria landraces (G1, G2, G3, G4 and G5) grown in greenhouses. Growth traits, first female flower emission, fruit yield, young shoot yield, fruit firmness, young shoot nitrogen use efficiency (NUEys) and specific young shoot quality parameters, such as soluble solids content (SSC), mineral profile, ascorbic acid, and polyphenols, were appraised. Plant height and number of leaves at 10, 20 and 30 days after transplant (DAT) were significantly higher in plants treated with SwE as compared with untreated plants. Treating plants with SwE increased marketable fruit yield, fruit mean mass, young shoot yield and number of young shoots by 14.4%, 15.0%, 22.2%, 32.4%, and 32.0%, respectively as compared with untreated plants. Relevant increments were also recorded for NUEys, P, K, Ca, Mg, ascorbic acid and polyphenols concentration. SwE application did not significantly affect total yield and SSC. Furthermore, SwE treated plants produced a lower number of marketable fruits than non-treated plants. The present study showed that SwE at 3 mL L−1 can fruitfully enhance crop performance, young shoot yield and quality of L. siceraria.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 233
Author(s):  
Sherif Fathy El-Gioushy ◽  
Rokayya Sami ◽  
Amina A. M. Al-Mushhin ◽  
Hanan M. Abou El-Ghit ◽  
Mohamed S. Gawish ◽  
...  

The goal of this study was to examine how to improve the vegetative growth, nutritional status, productivity, and fruit quality of Washington navel orange trees by examining the effect of foliar application of ZnSO4 (0, 300, and 600 mg/L) solutions in combination with CuSO4 (0, 200, and 400 mg/L) solutions on Washington navel orange trees, which were 11 years old and grown in clay loam soil with a surface irrigation system. The results showed that all the investigated measurements responded specifically to each investigated factor. ZnSO4 elicited a stronger and more effective response than CuSO4. Nonetheless, the response varied only slightly or moderately from one measurement to the next. In terms of the interaction effect between ZnSO4 and CuSO4 concentrations, the effect of each investigated factor was directly reflected in its combinations, with ZnSO4 (600 mg/L) and CuSO4 (200 and 400 mg/L) being the most effective for the majority of the measurements under consideration. When the highest level of ZnSO4 was combined with the highest level of CuSO4, the highest values for the various vegetative growth parameters shoot length and diameter, number of leaves per shoot, leaf area, and total assimilation area per shoot were obtained. As a result, the nutritional status (the highest total leaf chlorophyll and leaf mineral contents) was significantly coupled with the treatment of 600 mg/L ZnSO4 in combination with 400 mg/L CuSO4. Moreover, the combinations of the highest ZnSO4 concentration (600 mg/L) and CuSO4 concentration (400 mg/L) exhibited the greatest statistical values of the measurements of fruiting aspects as well as fruit quality. Consequently, it can be recommended that using 600 mg/L ZnSO4 in combination with 400 mg/L CuSO4 as a foliar spray on monthly basis during the period from March to July could be safely recommended under similar environmental conditions and horticulture practices adopted in the present experiment.


Sign in / Sign up

Export Citation Format

Share Document