scholarly journals Impact of Measurement Error on the Power Function of Average Control Chart under Non-Normal Population

Author(s):  
U. Mishra ◽  
J. R. Singh

In the present article, effect of measurement error on the power function of control charts for mean with control limits is considered based on non-normal population. The non-normality is represented by the first four terms of an Edge-worth series. Tabular and visual comparison is also provided for the better comprehension of the significance of measurement error on power function under non-normality.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.


2020 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
O. L. Aako ◽  
J. A. Adewara ◽  
K. S Adekeye ◽  
E. B. Nkemnole

The fundamental assumption of variable control charts is that the data are normally distributed and spread randomly about the mean. Process data are not always normally distributed, hence there is need to set up appropriate control charts that gives accurate control limits to monitor processes that are skewed. In this study Shewhart-type control charts for monitoring positively skewed data that are assumed to be from Marshall-Olkin Inverse Loglogistic Distribution (MOILLD) was developed. Average Run Length (ARL) and Control Limits Interval (CLI) were adopted to assess the stability and performance of the MOILLD control chart. The results obtained were compared with Classical Shewhart (CS) and Skewness Correction (SC) control charts using the ARL and CLI. It was discovered that the control charts based on MOILLD performed better and are more stable compare to CS and SC control charts. It is therefore recommended that for positively skewed data, a Marshall-Olkin Inverse Loglogistic Distribution based control chart will be more appropriate.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Darmanto Darmanto

<p><em>The manufacturing production process that is currently trend is short-run. Short-run process is a job shop and a just in-time. These causes the process parameters to be unknown due to unavailability of data and generally a small amount of product. The control chart is one of the control charts which  designed for the short run. The procedure of the control chart follows the concept of succesive difference and under the assumption of the multivariate Normal distribution. The sensitivity level of a control chart is evaluated based on the average run length (ARL) value. In this study, the ARL value was calculated based on the shift simulation of the average vector by recording the first m-point out of the control limits. The average vector shift simulation of the target () is performed simultaneously with the properties of a positive shift (=+ δ). Variations of data size and many variables in this study were m = 20, 50 and p = 2, 4, 8, respectively. Each scheme (a combination of δ, m and p) is iterated 250,000 times. The simulation results show that for all schemes when both parameters are known ARL<sub>0 </sub>≈ 370. But, when parameters are unknown, ARL<sub>1</sub> turn to smaller. This conclusion also implied when the number of p and n are increased, it reduce the sensitivity of the control chart.</em></p>


2017 ◽  
Vol 5 (6) ◽  
pp. 368-377
Author(s):  
Kalpesh S. Tailor

Moderate distribution proposed by Naik V.D and Desai J.M., is a sound alternative of normal distribution, which has mean and mean deviation as pivotal parameters and which has properties similar to normal distribution. Mean deviation (δ) is a very good alternative of standard deviation (σ) as mean deviation is considered to be the most intuitively and rationally defined measure of dispersion. This fact can be very useful in the field of quality control to construct the control limits of the control charts. On the basis of this fact Naik V.D. and Tailor K.S. have proposed 3δ control limits. In 3δ control limits, the upper and lower control limits are set at 3δ distance from the central line where δ is the mean deviation of sampling distribution of the statistic being used for constructing the control chart. In this paper assuming that the underlying distribution of the variable of interest follows moderate distribution proposed by Naik V.D and Desai J.M, 3δ control limits of sample standard deviation(s) chart are derived. Also the performance analysis of the control chart is carried out with the help of OC curve analysis and ARL curve analysis.


2017 ◽  
Vol 32 (1) ◽  
Author(s):  
Azamsadat Iziy ◽  
Bahram Sadeghpour Gildeh ◽  
Ehsan Monabbati

AbstractControl charts have been established as major tools for quality control and improvement in industry. Therefore, it is always required to consider an appropriate design of a control chart from an economical point of view before using the chart. The economic design of a control chart refers to the determination of three optimal control chart parameters: sample size, the sampling interval, and the control limits coefficient. In this article, the double sampling (DS)


Sign in / Sign up

Export Citation Format

Share Document