scholarly journals Effect of Variable Viscosity on Natural Convection Flow Between Vertical Parallel Plates in the Presence of Heat Generation/Absorption

Author(s):  
Tada M. Kabir ◽  
Abiodun O. Ajibade

The present article was aimed at investigating the effects of variable viscosity on natural convection flow between vertical parallel plates in the presence of heat generation/absorption. The nonlinear differential equations governing the flow were solved using Homotopy perturbation method. The impacts of the several governing parameters on the velocity and temperature profiles are presented graphically and values of skin friction, rate of heat transfer, mass flux and mean temperature for various values of physical parameters are presented through tables. In the course of computation, it was revealed that viscosity  ontributes to decrease velocity and hence reduced resistance to flow. It was also discovered that as the heat generation increases, fluid temperature and velocity increase, while it decrease with the increase in heat absorption. Finally, it was concluded that the skin friction on both plates increase as viscosity increases.

2020 ◽  
Vol 9 (1) ◽  
pp. 223-232 ◽  
Author(s):  
B.J. Gireesha ◽  
S. Sindhu

AbstractThis study has been conducted to focus on natural convection flow of Casson fluid through an annular microchannel formed by two cylinders in the presence of magnetic field. The process of heat generation/absorption is taken into consideration. Combined effects of various parameters such as porous medium, velocity slip and temperature jump are considered. Solution of the present mathematical model is obtained numerically using fourth-fifth order Runge-Kutta-Fehlberg method. The flow velocity, thermal field, skin friction and Nusselt number are scrutinized with respect to the involved parameters of interest such as fluid wall interaction parameter, rarefaction parameter, Casson parameter and Darcy number with the aid of graphs. It is established that higher values of Casson parameter increases the skin friction coefficient. Further it is obtained that rate of heat transfer diminishes as fluid wall interaction parameter increases.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Nazma Parveen ◽  
Md. Abdul Alim

The effect of temperature dependent variable viscosity on magnetohydrodynamic (MHD) natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface has been investigated. The governing boundary layer equations are first transformed into a nondimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the stream lines and the isotherms are shown graphically for a selection of parameters set consisting of viscosity parameter (), magnetic parameter (), and Prandtl number (Pr). Numerical results of the local skin friction coefficient and the rate of heat transfer for different values are also presented in tabular form.


2013 ◽  
Vol 42 (1) ◽  
pp. 47-55
Author(s):  
N. Parveen ◽  
M. A. Alim

The present numerical simulation is analyzed the Magnetohydrodynamic natural convection flow andheat transfer along a uniformly heated vertical wavy surface in presence of heat generation/absorption withtemperature dependent variable viscosity. Using the appropriate transformations the governing boundary layerequations are reduced to non-dimensional forms. The resulting nonlinear system of partial differentialequations are mapped into the domain of a vertical flat plate and then solved numerically applying implicitfinite difference method together with Keller-box scheme. The solutions are expressed in terms of the skinfriction coefficient, the rate of heat transfer, the streamlines as well as the isotherms over the whole boundarylayer. The implications of heat generation/absorption parameter (Q) and viscosity parameter (?) on the flowstructure and heat transfer characteristics are investigated in detail while, Prandtl number (Pr), magneticparameter (M) and the amplitude-to-length ratio of the wavy surface (?) are considered fixed. Comparison withpreviously published work is performed and is found to be in good agreement.DOI: http://dx.doi.org/10.3329/jme.v42i1.15944


2015 ◽  
Vol 45 (1) ◽  
pp. 24-31
Author(s):  
K. H. Kabir ◽  
M. A. Alim ◽  
L. S. Andallah ◽  
Saika Mahjabin

In this paper, the effects of viscous dissipation on natural convection flow along a uniformly heated vertical wavy surface with heat generation have been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear systems of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the Keller-box method. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the velocity as well as the temperature profiles are shown graphically and in tabular form for different values of physical parameters namely, viscous dissipation parameter Vd, heat generation parameter Q and Prandtl number Pr. 


Sign in / Sign up

Export Citation Format

Share Document